Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Optimal observational planning of local GPS networks: assessing an analytical method

H. Mehrabi
  • K.N.Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, 1346 Valiasr Street, Mirdaamaad intersection, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Voosoghi
  • K.N.Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, 1346 Valiasr Street, Mirdaamaad intersection, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-26 | DOI: https://doi.org/10.2478/jogs-2014-0005


Precision, reliability and cost are the major criteria applied in optimization and design of geodetic networks. The terrestrial networks are being replaced quickly by permanent and campaign Global Positioning System (GPS) networks. These networks must be optimized using the same three criteria. In this article the optimization of the observational plan of local GPS networks (Second Order Design (SOD)) is considered using the precision criterion. This study is limited to the selection of optimal numbers and the best distribution of the non-trivial baselines throughout the network. This objective is accomplished based on the SOD solution through the analytical method in operational research by the means of quadratic programming algorithm. This presented method is tested on a real GPS network and appears to be a useful technique in terms of cost reduction in the field work by the provided observational plan and optimal distribution of the baselines throughout the network. Results indicate that weights of almost 36% of the baselines are negligiblewhen compared to the weights of the rest of the baselines; therefore, they could be eliminated fromthe observational plan, resulting in a 36% saving in the fieldwork cost.

Keywords: Optimization; Precision of Geodetic Networks; Quadratic Programming; Static and Relative GPS Positioning


  • Amiri-Simkooei, A. R., 2001, Comparison of reliability and geometrical strength criteria in geodetic networks. J. Geod. 75, 227-233.Google Scholar

  • Amiri-Simkooei, A. R., 2004, A new method for second order design of geodetic networks: aiming at high reliability. Surv. Rev. 37,293, 552-560.Google Scholar

  • Amiri-Simkooei, A. R., J. Asgari, F. Zangeneh-Nejad and S. Zaminpardaz, 2012, Basic Concepts of Optimization and Design of Geodetic Networks. Journal of Surveying Engineering 138,4, 172- 183.Web of ScienceGoogle Scholar

  • Amiri-Simkooei, A. R. and M. A. Sharifi ,2004, Approach for equivalent accuracy design of different types of observations. Journal of Suveying Engineering 130,1, 1-5.Google Scholar

  • Baarda, W. ,1973, S-transformation and criterion matrices. Netherland Geodetic Commission. Delft, Netherlands. 5.Google Scholar

  • Bagherbandi, M., M. Eshagh and L. E. Sjöberg ,2009, Multi- Objective versus Single-Objective Models in Geodetic Network Optimization. Nordic Journal of Real Estate Research 6,1, 7-20.Google Scholar

  • Baselga, S. ,2011, Second order design of geodetic networks by the simulated annealing method. J. Surv. Eng. 137,4, 167-173.Google Scholar

  • Berber, M., P. Vanicek and P. Dare ,2009, Robustness analysis of 3D networks. J. Geodym. 47, 1-8.Google Scholar

  • Cross, P. and K. Thapa ,1979, The optimal design of levelling networks. Journal of Survey Review 25, 68-79.Google Scholar

  • Cross, P. A. ,1985, Numerical methods in network design. Optimization and design of geodetic networks. E. W. Grafarend and F. Sanso. Berlin, Springer, 429-435.Google Scholar

  • Dare, P. and H. Saleh ,2000, GPS network design: logistics solution using optimal and near-optimal methods. Journal of Geodesy 74, 467-478.CrossrefGoogle Scholar

  • Doma, M. I. ,2013, Particle Swarm Optimization in Comparison with Classical Optimization for GPS Network Design. Journal of Geodetic Science.Google Scholar

  • Dwivedi, R. and O. Dikshit ,2013, A comparison of particle swarm optimization (PSO) and genetic algorithm (GA) in second order design (SOD) of GPS networks. Journal of Applied Geodesy 7,2, 135-146.Google Scholar

  • Eshagh, M. ,2005, Optimization and design of geodetic networks. Ph.D. study report in geodesy. Stockholm, Sweden, Royal Institute of Technology, Division of Geodesy.Google Scholar

  • Even-Tzur, G. ,2002, GPS vector configuration design for monitoring deformation networks. Journal of Geodesy 76, 455-461.CrossrefGoogle Scholar

  • Fouskakis, D. and D. Draper ,2002, Stochastic Optimization: a Review. International Statistical Review 70,3, 315-349CrossrefGoogle Scholar

  • Grafarend, E. W. ,1970, Die Genauigkeit eines Punktes immehrdimensionalen Euklidischen Raum. C153. DGK. München.Google Scholar

  • Grafarend, E. W. ,1972, Genauigkeitsmasse geodätischer Netze. A73. DGK, München.Google Scholar

  • Grafarend, E. W. ,1974, Optimization of geodetic networks. Boll. Geod. Sci. Aff. 33,4, 351-406.Google Scholar

  • Grafarend, E. W. and F. Sanso ,1985, Optimization and design of geodetic networks. Berlin Heidelberg New York.Google Scholar

  • Johnson, H. and F. Wyatt ,1994, Geodetic network design for fault mechanics studies. Manuscripta Geodaetica 19, 309-323.Google Scholar

  • Jwo, D. J. and J. J. Chen ,2006, GPS/INS Navigation Filter Designs Using Neural Network with Optimization Techniques. Advances in Natural Computation 4221, 461-470.Google Scholar

  • Kashani, I., P. Wielgosz and D. Grejner-Brzezinska ,2003, Datum Definition in the LongRange Instantaneous RTK GPS Network Solution. Journal of Global Positioning Systems 2,2, 100-108.Google Scholar

  • Koch, K. R. ,1982, Optimization of the configuration of geodetic networks. Deutsche Geodaetische Kommission. Munich, B, 258/III, 82-89.Google Scholar

  • Koch, K. R., Ed. ,1985, First Order Design: Optimization of the con- figuration of a network by introducing small position changes. Optimization and design of geodetic networks. Berlin, Springer.Google Scholar

  • Koch, K. R. ,1999, Parameter Estimation and Hypothesis Testing in Linear Models. Berlin Heidelberg New York, Springer Verlag.Google Scholar

  • Kortesis, S. and A. Dermanis ,1987, An application of graph theory to the optimization of costs in trilateration networks. Manuscripta Geodaetica 12, 296-308.Google Scholar

  • Kuang, S. h. ,1992, Geodetic Network Optimization: A Handy Tool for Surveying Engineering. Journal of Surveying and Land Information System 52,3, 169-183.Google Scholar

  • Kuang, S. h. ,1993a, Second Order Design: Shooting for Maximum Reliability. Journal of Surveying Engineering 119,3, 102-110.Google Scholar

  • Kuang, S. h. ,1993b, On optimal design of three-dimensional networks. Manuscripta Geodaetica 18, 33-45.Google Scholar

  • Kuang, S. h. ,1994, A Strategy for GPS survey planning choice of optimum baselines. Journal of Surveying and Land Information 54,4, 187-201.Google Scholar

  • Kuang, S. h. ,1996, Geodetic network analysis and optimal design: Concepts and application. Sterling, Illinois, Chelsea, MI.Google Scholar

  • Kuang, S. h. and A. Chrzanowski ,1992, Multi-objective optimization design of geodetic networks. Manuscripta Geodaetica 17, 233- 244.Google Scholar

  • Lichton, M. S. ,1989, High Accuracy Global Positioning System Orbit Determination: Progress and Proopects. Symposium 102. Global Positioning System an Overview, IAG, Berlin: Springer Verlag.Google Scholar

  • Mehrabi, H. ,2002, Analytical Approach to Bi-Objective Optimization and design of 2-D Geodetic Networks. Department of Geodesy and Geomatics, K. N. Toosi University of Technology. M.Sc.Google Scholar

  • Sahabi, H., M. A. Rajabi and J. A. R. Blais ,2008, Optimal Configuration Design of Geodetic Networks Using Penalty Function-Based Genetic Algorithm. Geophysical Research Abstracts, EGU General Assembly 2008.Google Scholar

  • Schaffrin, B. ,1985, Aspects of network design. optimization and design of geodetic networks. E. W. Grafarend and F. Sanso. Berlin, Springer Verlag.Google Scholar

  • Schmitt, G. ,1980, Second order design of free distance networks considering different types of criterion matrices. Bull. Geod. 54, 531-543.Google Scholar

  • Vanicek, P., M. R. Craymer and E. J. Krakiwsky ,2001, Robustness analysis of geodetic horizontal networks. J. Geod. 75, 199-209.Google Scholar

  • Wells, D., Ed. ,1986, Guide to GPS Positioning. Canada, Fredricton, C. D.Google Scholar

  • Xu, P. L. ,1989, The multi-objective optimal second order design of nets. Bull. Geod. 63, 297-308.Google Scholar

  • Xu, P. L. and E. W. Grafarend ,1995, A multi-objective second order optimal design of deforming networks. Geophys. J. Int. 120, 577- 589.Google Scholar

  • Xue, S., Y. Yang, Y. Dang and W. Chen ,2013, Dynamic positioning configuration and its first-order optimization. J. Geod.Google Scholar

  • Yetkin, M. and M. Berber ,2012, GPS baseline configuration design based on robustness analysis. Journal of Geodetic Science 2,3, 234-239.Google Scholar

  • Yetkin, M., C. Inal and C. O. Yigit ,2011, The Optimal Design of Baseline Configuration in GPS Networks by Using the Particle Swarm Optimisation Algorithm. Surv. Rev. 43,323, 700-712. Web of ScienceGoogle Scholar

About the article

Received: 2013-09-22

Accepted: 2014-03-11

Published Online: 2014-06-26

Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0005.

Export Citation

© 2014 H. Mehrabi, B. Voosoghi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vinicius Francisco Rofatto, Marcelo Tomio Matsuoka, and Ivandro Klein
Boletim de Ciências Geodésicas, 2018, Volume 24, Number 2, Page 152
M. Amin Alizadeh-Khameneh, Lars E. Sjöberg, and Anna B. O. Jensen
Survey Review, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in