Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from Grace

Inga Bergmann-Wolf / Liangjing Zhang / Henryk Dobslaw
Published Online: 2014-04-12 | DOI: https://doi.org/10.2478/jogs-2014-0006

Abstract

Global degree-1 coefficients are derived by means of the method by Swenson et al. (2008) from a model of ocean mass variability and RL05 GRACE monthly mean gravity fields. Since an ocean model consistent with the GRACE GSM fields is required to solely include eustatic sea-level variability which can be safely assumed to be globally homogeneous, it can be empirically derived from GRACE aswell, thereby allowing to approximate geocenter motion entirely out of the GRACE monthly mean gravity fields. Numerical experiments with a decade-long model time-series reveal that the methodology is generally robust both with respect to potential errors in the atmospheric part of AOD1B and assumptions on global degree-1 coefficients for the eustatic sea-level model. Good correspondence of the GRACE RL05-based geocenter estimates with independent results let us conclude that this approximate method for the geocenter motion is well suited to be used for oceanographic and hydrological applications of regional mass variability from GRACE,where otherwise an important part of the signal would be omitted.

References

  • Blewitt G., Lavallee D., Clarke P. and Nurutdinov K. (2001), A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 5550, 2342-2345, 10.1126/science.1065328.Google Scholar

  • Chambers D. P. and Willis J. K. (2009), Low-frequency exchange of mass between ocean basins (2009), J. Geophys. Res., 114, C11008, 10.1029/2009JC005518.Web of ScienceGoogle Scholar

  • Chambers D. P. (2004), Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, 13, L13310, 10.1029/2004GL020461.Google Scholar

  • Chen J.L., Rodell M., Wilson C.R. and Famiglietti J.S. (2005), Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, 10.1029/2005GL022964.Google Scholar

  • Chen J., Wilson C., Eanes R. and Nerem R. (1999), Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104, B2, 2683-2690, 10.1029/1998JB900019.Google Scholar

  • Cheng M., Tapley B. and Ries J. (2010), Geocenter Variations from Analysis of SLR data, IAG Commission 1 Symposium (2010), Reference Frames for Application in Geosciences (REFAG2010), Marne-La-Vallee, France.Google Scholar

  • Cretaux J., Soudarin L., Davidson F., Gennero M., Berge-Nguyen M. and Cazenave A. (2002), Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107, B12, 10.1029/2002JB001820.Google Scholar

  • Dahle C., Flechtner F., Gruber C., König R., Michalak G. and Neumayer K.-H. (2012), GFZ GRACE Level-2 Processing Standards Document for Level-2-Product Release 0005, Tech. rep., 10.2312/GFZ.b103-12-20.Google Scholar

  • Davis J., Elosequi P., Mitrovica J. and Tamisiea M. (2004), Climatedriven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, 24, 10.1029/2004GL021435.Google Scholar

  • Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kallberg P., Koehler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J. -J., Park B. -K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. -N. and Vitart F. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 656A, 553-597, 10.1002/qj.828.Web of ScienceGoogle Scholar

  • Dill R. and Dobslaw H. (2013), Numerical simulations of global-scale high-resolution hydrological crustal deformations, J. Geophys. Res., 118, 9, 5008-5017, 10.1002/jgrb.50353.Web of ScienceGoogle Scholar

  • Dobslaw H. and Thomas M. (2007), Impact of river run-off on global ocean mass redistribution, Geophys. J. Int., 168, 2, 10.1111/j.1365-246X.2006.03247.x.Google Scholar

  • Dobslaw H., Flechtner F., Bergmann-Wolf I., Dahle C., Dill R., Esselborn S., Sasgen I. and Thomas M. (2013), Simulating highfrequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05, J. Geophys. Res., 10.1002/jgrc.20271.Google Scholar

  • Eanes R. (2000), SLR solutions from the University of Texas Center for Space Research, Geocenter from TOPEX SLR/DORIS, 1992-2000, http://sbgg.jpl.nasa.gov/dataset.html, IERS Spec. Bur. for Gravity/ Geocent., Pasadena, Calif.Google Scholar

  • Ettema J., van den Broeke M. R., van Meijgaard E., van de Berg W. J., Bamber J. L., Box J. E. and Bales R. C. (2009), Higher surface mass balance of the Greenland ice sheet revealed by highresolution climate modeling, Geophys. Res. Lett., 36, L12501, 10.1029/2009GL038110.Web of ScienceGoogle Scholar

  • Fasullo J. T., Boening C., Landerer F. W. and Nerem R. S. (2013), Australia’s unique influence on global sea level in 2010-2011, Geophys. Res. Lett., 40, 16, 4368-4373, 10.1002/grl.50834.Google Scholar

  • Flechtner F. and Dobslaw H. (2013), AOD1B Product Description Document for Product Release 05, Tech. rep..Google Scholar

  • Fritsche M., Dietrich R., Ruelke A., Rothacher M. and Steigenberger P. (2010), Low-degree earth deformation from reprocessed GPS observations, GPS Solut., 14, 2, 165-175, 10.1007/s10291-009-0130-7.Web of ScienceCrossrefGoogle Scholar

  • Gruber Th., Bamber J. L., Bierkens M. F. P., Dobslaw H., Murböck M., Thomas M., van Beek L. P. H., van Dam T., Vermeersen L. L. A. and Visser P. N. A. M. (2011), Simulation of the time-variable gravity field by means of coupled geophysical models, Earth System Science Data, 3, 1, 19-35,10.5194/essd-3-19-2011.Google Scholar

  • Hughes, C. W., Tamisea, M. E., Bingham, R. J. and Williams, J. (2012), Weighing the ocean: Using a single mooring tomeasure changes in the mass of the ocean, Geophys. Res. Lett., 39, 7, L17602, 10.1029/2012GL052935.Web of ScienceGoogle Scholar

  • Jansen M. J. F., Gunter B. C. and Kusche J. (2009), The impact of GRACE, GPS and OBP data on estimates of global mass redistribution, Geophys. J. Int., 177, 1, 1-13, 10.1111/j.1365-246X.2008.04031.x.Google Scholar

  • Klees R., Zapreeva E. H.,Winsemius H. C. and Savenije H. H. G. (2007), The bias in GRACE estimates of continental water storage variations, Hydrol. Earth Syst. Sci., 11, 4, 1227-1241, 10.5194/hessd-3-3557-2006.CrossrefWeb of ScienceGoogle Scholar

  • Kuhlmann J., Dobslaw H. and Thomas M. (2011), Improved modeling of sea level patterns by incorporating self-attraction and loading, J. Geophys. Res., 116, C11036,10.1029/2011JC007399.Web of ScienceGoogle Scholar

  • Kusche J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geod., 81, 11, 733-749, 10.1007/s00190-007-0143-3.Web of ScienceGoogle Scholar

  • Lavallée D., van Dam T., Blewitt G. and Clarke P. (2006), Geocenter motions from GPS: A unified observation model, J. Geophys. Res., 111, B5, 10.1029/2005JB003784.Google Scholar

  • Lorbacher K., Marsland S. J., Church J. A., Griffies S. M. and Stammer D. (2012), Rapid barotropic sea level rise from ice sheet melting, J. Geophys. Res., 117, C06003, 10.1029/2011JC007733.Web of ScienceGoogle Scholar

  • Paulson A., Zhong S. andWahr J. (2007), Inference ofmantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 2, 497-508, 10.1111/j.1365-246X.2007.03556.x.Web of ScienceGoogle Scholar

  • Petit G., and Luzum B. (2010), IERS Convention (2010), IERS Technical Note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main.Google Scholar

  • Rietbroek, R., Brunnabend, S.-E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J. and Timmermann, R. (2009), Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution, J. Geophys. Res., 114, C11, C11004, 10.1029/2009JC005449.Google Scholar

  • Rietbroek R., Fritsche M., Brunnabend S.-E., Daras I., Kusche J., Schröter J., Flechtner F. and Dietrich R. (2012), Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data, J. Geodyn., 59-60, 64-71, 10.1016/j.jog.2011.02.003.Web of ScienceGoogle Scholar

  • Siegismund F., Romanova V., Köhl A. and Stammer D. (2011), Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations, J. Geophys. Res., 116, C7, C07021, 10.1029/2010JC006727.Web of ScienceGoogle Scholar

  • Swenson S. and Wahr J. (2002), Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE)measurements of time-variable gravity, J. Geophys. Res., 107, B9, 2193, 10.1029/2001JB000576.Google Scholar

  • Swenson, S., Chambers, D. andWahr, J. (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B8, B08410, 10.1029/2007JB005338.Web of ScienceGoogle Scholar

  • Tamisiea, Mark E. (2011), Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 3, 1036-1044, 10.1111/j.1365-246X.2011.05116.x.Web of ScienceGoogle Scholar

  • Wahr J., Molenaar M. and Bryan F. (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, B12, 30205-30229, 10.1029/98JB02844.Google Scholar

  • Wouters B., Riva R. E. M., Lavallee D. A. and Bamber J. L. (2011), Seasonal variations in sea level induced by continental water mass: First results from GRACE, Geophys. Res. Lett., 38, L03303, 10.1029/2010GL046128.Web of ScienceGoogle Scholar

  • Zenner L., Fagiolini E., Daras I., Flechtner F., Gruber T., Schmidt T. and Schwarz G. (2012), Non-tidal atmospheric and oceanicmass variations and their impact on GRACE data analysis, J. Geodyn., 59, SI, 9-15, 10.1016/j.jog.2012.01.010.Web of ScienceGoogle Scholar

About the article

Published Online: 2014-04-12

Published in Print: 2014-04-01


Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0006.

Export Citation

© by Inga Bergmann-Wolf. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andreas Richter, Andreas Groh, Martin Horwath, Erik Ivins, Eric Marderwald, José Luis Hormaechea, Raúl Perdomo, and Reinhard Dietrich
Remote Sensing, 2019, Volume 11, Number 8, Page 909
[2]
Qiang Chen, Lea Poropat, Liangjing Zhang, Henryk Dobslaw, Matthias Weigelt, and Tonie van Dam
Remote Sensing, 2018, Volume 10, Number 12, Page 1976
[3]
L. Poropat, H. Dobslaw, L. Zhang, A. Macrander, O. Boebel, and M. Thomas
Journal of Geophysical Research: Oceans, 2018
[4]
Yu Sun, Riccardo Riva, and Pavel Ditmar
Journal of Geophysical Research: Solid Earth, 2016, Volume 121, Number 11, Page 8352

Comments (0)

Please log in or register to comment.
Log in