Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou

J. Tegedor / O. Øvstedal / E. Vigen
Published Online: 2014-06-17 | DOI: https://doi.org/10.2478/jogs-2014-0008

Abstract

State of the art Precise Point Positioning (PPP) is currently based on dual-frequency processing of GPS and Glonass navigation systems. The International GNSS Service (IGS) is routinely providing the most accurate orbit and clock products for these constellations, allowing point positioning at centimeter-level accuracy. At the same time, the GNSS landscape is evolving rapidly, with the deployment of new constellations, such as Galileo and BeiDou. The BeiDou constellation currently consists of 14 operational satellites, and the 4 Galileo In-Orbit Validation (IOV) satellites are transmitting initial Galileo signals. This paper focuses on the integration of Galileo and BeiDou in PPP, together with GPS and Glonass. Satellite orbits and clocks for all constellations are generated using a network adjustment with observation data collected by the IGS Multi-GNSS Experiment (MGEX), as well as from Fugro proprietary reference station network. The orbit processing strategy is described, and orbit accuracy for Galileo and BeiDou is assessed via orbit overlaps, for different arc lengths. Kinematic post-processed multi-GNSS positioning results are presented. The benefits of multiconstellation PPP are discussed in terms of enhanced availability and positioning accuracy.

Keywords: BeiDou; Galileo; Intersystem-biases; Multiconstellation Precise Point Positioning

References

  • Zumberge J.F., Heflin M.B, Je_erson D.C. and Watkins M. M., 1997, “Precise point positioning for the e_cient and robust analysis of GPS data from large networks”, J Geophys. Res., 102, 1, 5005-5017.Google Scholar

  • Kanzaki M., Matsushita Y. and Kakimoto H., 2011, “GNSS Positioning of Ocean Buoys in Japan for Disaster Prevention,” Proc. Int. Tech. Meeting of the Satelite Division the Institute of Navigation, 717-723.Google Scholar

  • Geng J., Teferle F., Meng X. and Dodson A., 2010, “Kinematic precise point positioning at remote marine platforms”, GPS Solut, 14, 343-350.Web of ScienceCrossrefGoogle Scholar

  • Defraigne P., Guyennon N. and Bruyninx C., 2008, “GPS Time and Frequency Transfer: PPP and Phase-Only Analysis”, Int. J. of Navigation and Observation, 1-7.Google Scholar

  • Leandro R., Santos M. and Langley R., 2007, “PPP-based ionospheric activity monitoring”, Proc. Int. Tech. Meeting of the Satellite Division of The Institute of Navigation, 2849-2853.Google Scholar

  • Kjørsvik N., Gjevestad J. and Øvstedal O., 2006, “Handling of the tropospheric delay in kinematic precise point positioning”, Proc. Int. Tech. Meeting of the Satelite Division of the Institute of Navigation, 2279-2285.Google Scholar

  • Leandro R., Santos M. and Langley R., 2010, “Analyzing GNSS data in precise point positioning software”, GPS Solut, 15, 1-13.Web of ScienceGoogle Scholar

  • Dow J., Neilan R. and Rizos C., 2009, “The International GNSS Service in a changing landscape of global navigation satellite systems”, J Geod, 83, 3, 191-198.Google Scholar

  • Kouba J. and Héroux P., 2001, “GPS Precise Point Positioning using IGS orbit products”, GPS Solut, 5, 2, 12-28.Google Scholar

  • Hesselbarth A., 2011, “Statische und kinematische GNSSAuswertung mittels Precise Point Positioning (PPP)”. PhD Thesis, Technischen Universität Dresden.Google Scholar

  • Caissy M., Agrotis L., Weber G., Hernandez-Pajares M. and Hugentobler U., 2012, “The International GNSS Real-time Service”, GPS World, June 2012.Google Scholar

  • Melgard T., Vigen E., de Jong K. and Oerpen O., 2009, “G2 - The First Real-Time GPS and GLONASS Precise Orbit and Clock Service”, Proc. of the Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, 1885- 1891.Google Scholar

  • Leandro R., Landau H. and Nitschke M., 2011, “RTX Positioning: The Next Generation of cm- accurate Real-Time GNSS Positioning”, Proc. of the Int. Tech. Meeting of The Satellite Division of the Institute of Navigation, 1460 - 1475, 2011.Google Scholar

  • Rizos C., Montenbruck O., Weber R., Weber G., Neilan R. and Hugentobler U., 2013, “The IGS MGEX Experiment as a Milestone for a Comprehensive Multi-GNSS Service”, Proc. of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, 289-295.Google Scholar

  • Grelier T., 2007, “Initial Observations and analysis of Compass MEO Satellite Signals”, Inside GNSS, May/June, 39-42.Google Scholar

  • European Commision, 2010, “European GNSS ( Galileo ) Open Service Signal in Space Interface Control Document,” Tech. report.Google Scholar

  • Melgard T., Tegedor J., de Jong K., Lapucha D. and Lachapelle G., 2013, “Interchangeable Integration of GPS and Galileo by Using a Common System Clock in PPP”, Proc. of the Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, 1198-1206.Google Scholar

  • Collins P., Bisnath S., Lahaye F., and Héroux P., 2008, “Undi_erenced GPS Ambiguity Resolution using the Decoupled Clock Model and Ambiguity Datum Fixing”, Proc. of the Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, 1315-1322.Google Scholar

  • Reussner N. and Wanninger L., 2011, “GLONASS Inter-frequency Biases and Their E_ects on RTK and PPP Carrier-phase Ambiguity Resolution”, Proc. of the Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, 712-716.Google Scholar

  • Laurichesse D., Mercier F., Berthias J. and Broca P., 2009, “Integer ambiguity resolution on undi_erenced GPS phase measurements and its application to PPP and satellite precise orbit determination”, J Inst Navig, 56, 2, 135-149.Google Scholar

  • Springer T. and Dow J., 2009, “NAPEOS Mathematical Models and Algorithms 1.0,” European Space Agency, DOPS-SYS-TN-0100- OPS-GN.Google Scholar

  • Boehm J., Heinkelmann R. and Schuh H., 2007, “Short Note: A global model of pressure and temperature for geodetic applications” J Geod, 81, 679-683.Google Scholar

  • Schmid R., Steigenberger P., Gendt G., Ge M. and Rothacher M., 2007, “Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas”, J Geod, 81, 781-798.Google Scholar

  • Kouba J., 2008, “A simpli_ed yaw-attitude model for eclipsing GPS satellites”, GPS Solut, 13, 1-12.Web of ScienceGoogle Scholar

  • Wu J., Wu S., Hajj G., Bertiguer W., and Lichten S., 1993, “E_ects of Antenna Orientation on GPS Carrier Phase Measurements”, Man. Geod., 18, 91-98.Google Scholar

  • Chuang S., Wenting Y., Weiwei S., Yidong L. and Rui, Z., 2013, “GLONASS pseudorange interchannel biases and their e_ects on combined GPS/GLONASS precise point positioning”, GPS Solut, 17, 439-451.Web of ScienceCrossrefGoogle Scholar

  • Wanninger, L., 2012, “Carrier-phase inter-frequency biases of GLONASS receivers”, J Geod, 86, 139-148.Google Scholar

  • Kouba J., 2009, “A guide to using International GNSS Service (IGS) products”, Available at http://igscb.jpl.nasa.gov/components/usage.html. Google Scholar

About the article

Received: 2014-01-20

Accepted: 2014-04-03

Published Online: 2014-06-17

Published in Print: 2014-04-01


Citation Information: Journal of Geodetic Science, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0008.

Export Citation

© by J. Tegedor. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wang Gao, Chengfa Gao, Shuguo Pan, Xiaolin Meng, and Yan Xia
Remote Sensing, 2017, Volume 9, Number 9, Page 948
[2]
Changsheng Cai, Yangzhao Gong, Yang Gao, and Cuilin Kuang
Sensors, 2017, Volume 17, Number 6, Page 1302
[3]
Yulong Ge, Feng Zhou, Baoqi Sun, Shengli Wang, and Bo Shi
Sensors, 2017, Volume 17, Number 3, Page 602
[4]
Wenwu Ding, Felix Norman Teferle, Kamil Kazmierski, Denis Laurichesse, and Yunbin Yuan
Journal of Geophysical Research: Atmospheres, 2017, Volume 122, Number 5, Page 2779
[5]
Mahmoud Abd Rabbou, Adel El-Shazly, and Kamal Ahmed
Survey Review, 2017, Page 1
[6]
Tao Geng, Xin Xie, Qile Zhao, Xianglin Liu, and Jingnan Liu
GPS Solutions, 2017, Volume 21, Number 3, Page 1191
[7]
Zongpeng Pan, Hongzhou Chai, and Yulong Kong
Advances in Space Research, 2017
[8]
Xidong Yu and Jingxiang Gao
ISPRS International Journal of Geo-Information, 2017, Volume 6, Number 1, Page 6
[9]
Martin Håkansson, Anna B. O. Jensen, Milan Horemuz, and Gunnar Hedling
GPS Solutions, 2017, Volume 21, Number 3, Page 849
[10]
Akram Afifi and Ahmed El-Rabbany
Sensors, 2016, Volume 16, Number 6, Page 779
[11]
Javier Tegedor, Xianglin Liu, Kees de Jong, Matthew Goode, Ola Øvstedal, and Erik Vigen
Navigation, 2016, Volume 63, Number 2, Page 173
[13]
Simon Banville
Journal of Geodesy, 2016, Volume 90, Number 5, Page 487
[14]
Shengfeng Gu, Yidong Lou, Chuang Shi, and Jingnan Liu
Journal of Geodesy, 2015, Volume 89, Number 10, Page 979

Comments (0)

Please log in or register to comment.
Log in