Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Detection of ionospheric signatures from GPS-derived total electron content maps

T. Durgonics
  • Universidade do Algarve, Faro, 8005-139, Portugal and DTU Space, National Space Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Prates
  • Universidade do Algarve, Faro, 8005-139, Portugal and Laboratorio de Astronomía, Geodesia y Cartografía, Universiadad de Cádiz, Cádiz, 11510, Spain and Centro de Estudos Geográficos, IGOT, Universidade de Lisboa, Lisboa, 1600-214, Portugal and Gonçalo Prates, Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139, Faro, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Berrocoso
  • Laboratorio de Astronomía, Geodesia y Cartografía, Universiadad de Cádiz, Cádiz, 11510, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-24 | DOI: https://doi.org/10.2478/jogs-2014-0011

Abstract

The processing of measurement data from satellite constellations such as Global Navigation Satellite Systems (GNSS), including the well-known Global Positioning System (GPS), have been successfully applied to virtually all areas of geophysical sciences. In this work, a method is described where Geographical Information Systems (GIS) are employed to build hourly ionospheric Total Electron Content (TEC) maps for 2011 over the southern Iberian Peninsula. The maps used GPS-derived geometryfree linear combinations attained from station data from the Algarve, Alentejo (Portugal), Andalusia, Murcia and Valencia (Spain) regions. Following the construction of the ionospheric maps, it was possible to relate these results to natural phenomena. The observed phenomena included diurnal and seasonal variations: daytime TEC maxima, nighttime TEC peaks, summer TEC value decreases, and spring and fall TEC maxima. After validation of these periodic phenomena, detection of non-periodic changes, such as solar flares and tectonic interactions with the ionosphere were attempted. The results showed a TEC increase following a selected solar flare event and a potential TEC build-up prior to the 2011 Lorca earthquake. Further studies could open up the possibility of building early warning systems. The presented methods, based on available software packages, are also of value in monitoring the effect of the ionosphere on radio signals, satellite and mobile communication, power grids, and for accurate GNSS navigation.

Keywords: Earthquake precursors; geographic information systems; global positioning system; regional ionospheric maps; total electron content

References

  • Afraimovich E. L., Voyeikov S. V., Edemskiy I. K. and Yasyukevich Y. V., 2009, MHD nature of night-time MSTIDs excited by the solar terminator, Geophys. Res. Lett., 36Web of ScienceGoogle Scholar

  • Astafyeva E. I., Afraimovich E. L., Oinats A. V., Yasukevich Yu. V. and Zhivetiev I. V., 2008, Dynamics of global electron content in 1998–2005 derived from global GPS data and IRI modeling, Adv. Space Res., 42, 763–769Google Scholar

  • Boots B. N., 1986, Voronoi (Thiessen) Polygons (Concepts and techniques in modern geography), GeoBooks, Norwich, UKGoogle Scholar

  • Camargo P. O., Monico J. F. G. and Ferreira L. D. D., 2000, Application of ionospheric corrections in the equatorial region for L1 GPS users, Earth Planets Space, 52, 1083–1089CrossrefGoogle Scholar

  • Cressie, N. A. C., 1990, The Origins of Kriging, Mathematical Geology, 22, 239–252CrossrefGoogle Scholar

  • Dach R., Hugentobler U., Pierre F. and Michael M., 2007, User manual of the Bernese GPS Software Version 5.0, Swiss Astronomical Institute, Bern, SwitzerlandGoogle Scholar

  • Davis P. J., 1975, Interpolation and Approximation, Dover Publications, New York, U.S.A.Google Scholar

  • Dubois G., 2000, How representative are samples in a sampling network?, J. Geogr. Inform. Decis. Anal., 4, 1-10Google Scholar

  • Georgiadou, Y., 1994, Modelling the ionosphere for an active control network of GPS stations, Delft, University of Technology, LGR - series: publications of the Delft Geodetic Computing Centre 7Google Scholar

  • Gibbons W. and Moreno T., 2003, The geology of Spain, Geological Society of LondonGoogle Scholar

  • Hofmann-Wellenhof B., Lichtenegger H. and Collins J., 1994, GPS Theory and Practice (3rd ed.), Springer-Verlag. Vienna, AustriaGoogle Scholar

  • Horvath I. and Essex E. A., 2000, Investigating the mid-latitude nighttime total electron content (TEC) enhancements and their relation to the low-latitude ionosphere at low sunspot numbers, Workshop on the Applications of Radio Science WARS 2000 (Beechworth, Australia), Melbourne, AustraliaGoogle Scholar

  • Huang Z. and Roussel-Dupré R., 2006, Total electron content (TEC) variability at Los Alamos, New Mexico: A comparative study: FORTE-derived TEC analysis, Radio Sci., 40Google Scholar

  • Jin S. and Jin R., 2011, GPS Ionospheric Mapping and Tomography: A case study in a geomagnetic, Proceeding of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 1127–1130Google Scholar

  • Komjathy A., 1997, Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, PhD thesis, University of New Brunswick, New Brunswick, CanadaGoogle Scholar

  • Leick A., 1995, GPS Satellite Surveying (2nd ed.), John Wiley & Sons, Hoboken, NJ, U.S.AGoogle Scholar

  • Lognonné P., Artrub J., Garcia R., Crespona F., Ducica V., Jeansouc E. et al., 2006, Ground-based GPS imaging of ionospheric postseismic signal, Planet. Space Sci., 54, 528–540Google Scholar

  • Okabe A., Boots B., Sugihara K. and Chiu S. N., 2000, Spatial Tessellations – Concepts and Applications of Voronoi Diagrams (2nd ed.), John WileyGoogle Scholar

  • Orús R., Hernández-Pajares M., Juan J. M. and Sanz J., 2003, Ionospheric effects on precise navigation at regional and continental scales over Europe, ISPRS International workshop, Castelldefels, SpainGoogle Scholar

  • Ouzounov D., Pulinets S., Romanov A., Romanov A., Tsybulya K., Davidenko D. et al., 2011, Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations. Preliminary results. Earthq. Sci., 24, 557- 564Google Scholar

  • Paláncz B., Völgyesi L., Zaletnyik P. and Kovács L., 2006, Extraction of Representative Learning Set from Measured Geospatial Data, 7th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, HungaryGoogle Scholar

  • Perrone L., Korsunova L. P. and Mikhailov A. V., 2010, Ionospheric precursors for crustal earthquakes in Italy, Ann. Geophys., 28, 941–950CrossrefWeb of ScienceGoogle Scholar

  • Ping J., Matsumoto K., Kono Y., Saito A., Shum C., Heki K. and Kawano N., 2002, Regional ionosphere map over Japanese Island, Earth Planets Space, 54, 13–16CrossrefGoogle Scholar

  • Ping J., Matsumoto K., Kono Y., Saito A., Shum C., Heki K. and Kawano N., 2003, Monitoring the Middle and Small Scale TEC Variations over Japanese Islands by GEONET, International Workshop on GPS Meteorology, Tsukuba, JapanGoogle Scholar

  • Pulinets S. and Boyarchuk K., 2004, Ionospheric Precursors of Earthquakes, Springer, Berlin, GermanyGoogle Scholar

  • Schaer S., Gurtner W. and Feltens J., 1998, WernerIONEX: The IONosphere Map EXchange Format Version 1, Proceedings of the IGS AC Workshop, Darmstadt, GermanyGoogle Scholar

  • Takahashi H., Costa S., Otsuka Y., Shiokawa K., Monico J. F. G. and Paula E., 2014, Diagnostics of equatorial and low latitude ionosphere by TEC mapping over Brazil, Adv. Space Res. (in press) DOI: 10.1016/j.asr.2014.01.032CrossrefGoogle Scholar

  • Taylor G. and Blewit G., 2006, Intelligent positioning - GIS-GPS unification, Wiley, EnglandGoogle Scholar

About the article

Received: 2014-02-24

Accepted: 2014-06-08

Published Online: 2014-06-24


Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0011.

Export Citation

© 2014 T. Durgonics et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Qinglin Guan, Chunming Fan, Jishi Zheng, Guangyao Wang, and Guangyong Chen
Journal of Applied Remote Sensing, 2019, Volume 13, Number 03, Page 1
[2]
Gopal Sharma, Prashant Kumar Champati ray, Sarada Mohanty, Param Kirti Rao Gautam, and Suresh Kannaujiya
Journal of Applied Remote Sensing, 2017, Volume 11, Number 04, Page 1
[3]
Tibor Durgonics, Attila Komjathy, Olga Verkhoglyadova, Esayas B. Shume, Hans-Henrik Benzon, Anthony J. Mannucci, Mark D. Butala, Per Høeg, and Richard B. Langley
Radio Science, 2017, Volume 52, Number 1, Page 146
[4]
Olga Maltseva and Natalia Mozhaeva
International Journal of Antennas and Propagation, 2015, Volume 2015, Page 1

Comments (0)

Please log in or register to comment.
Log in