Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Adjusting altimetric sea surface height observations in coastal regions. Case study in the Greek Seas

Ioannis Mintourakis
  • Corresponding author
  • School of Rural and Surveying Engineering, National Technical University of Athens, Zografou, 15780, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-25 | DOI: https://doi.org/10.2478/jogs-2014-0012


When processing satellite altimetry data for Mean Sea Surface (MSS) modelling in coastal environments many problems arise. The degradation of the accuracy of the Sea Surface Height (SSH) observations close to the coastline and the usually irregular pattern and variability of the sea surface topography are the two dominant factors which have to be addressed. In the present paper, we study the statistical behavior of the SSH observations in relation to the range from the coastline for many satellite altimetry missions and we make an effort to minimize the effects of the ocean variability. Based on the above concepts we present a process strategy for the homogenization of multi satellite altimetry data that takes advantage ofweighted SSH observations and applies high degree polynomials for the adjustment and their uniffcation at a common epoch. At each step we present the contribution of each concept to MSS modelling and then we develop a MSS, a marine geoid model and a grid of gravity Free Air Anomalies (FAA) for the area under study. Finally, we evaluate the accuracy of the resulting models by comparisons to state of the art global models and other available data such as GPS/leveling points, marine GPS SSH’s and marine gravity FAA’s, in order to investigate any progress achieved by the presented strategy


  • Andersen O.B., Knudsen P. and Philippa A.M.B., 2010, The DNSC08GRA global marine gravity ffeld from double retracked satellite altimetry, Journal of Geodesy, vol.84, pp 191-199.Web of ScienceGoogle Scholar

  • Andersen O.B., 2010, The DTU10 Gravity ffeld and Mean sea surface, presented in “Second international symposium of the gravity ffeld of the Earth (IGFS2)” Symposium, Fairbanks, Alaska.Google Scholar

  • Cipollini P., Gómez-Enri J., Gommenginger C., Martin-Puig C., Vignudelli S., Woodworth P. and Benveniste J., 2008, Developing radar altimetry in the oceanic coastal zone: the COASTALT project, presented at EGU General Assembly 2008, Vienna, Austria, 13-18 April, 2008.Google Scholar

  • Claessens S.J., 2012, Evaluation of Gravity and Altimetry Data in Australian Coastal Regions, Geodesy for Planet Earth, International Association of Geodesy Symposia, vol. 136, pp 435-442.Google Scholar

  • Fernandes M. J., Bastos L., Antunes, M., 2002, Coastal Satellite Altimetry Methods for Data Recovery and Validation. In I.Tziavos (ed.), 3rd Meeting of the International Gravity & Geoid Commission GG2002, Editions ZITI, pp 302-307.Google Scholar

  • Garcia E.S., Sandwell D.T. and Smith W.H.F., 2014, Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity ffeld recovery, Geophysical Journal International, vol. 196, issue n.3, pp 1402-1422.Web of ScienceGoogle Scholar

  • Huber P.J., 1964, Robust Estimation of a Location Parameter, The Annals of Mathematical Statistics, vol. 35, no. 1, pp 73-101.Google Scholar

  • Kotsakis C., Katsambalos K., and Gianniou M., 2009, Evaluation of EGM08 based on GPS and orthometric heights over the Hellenic mainland, Newton’s Bulletin - External Quality Evaluation Reports of EGM08, issue n.4, pp 144-163.Google Scholar

  • Knudsen, P., 1992, Altimetry for Geodesy and Oceanography. In Geodesy and Geophysics, pp 87-129, Finnish Geodetic Institute.Google Scholar

  • Knudsen P., Vest A.L. and Andersen O.B., 2005, Evaluating mean dynamic topography models within the GOCINA project. ESA SP-572.Google Scholar

  • Lillibridge J., Smith W.F.H., Sandwell D., Scharroo R., Lemoine F.G. and Zelensky N.P., 2006, 20 Years of Improvements to GEOSAT Altimetry, presented in “15 Years of Progress in Radar Altimetry” Symposium, Venice, Italy.Google Scholar

  • Menke, W., 1989, Geophysical Data Analysis: Discrete Inverse Theory, Revised Edition, Academic Press, San Diego.Google Scholar

  • Mintourakis I., and Delikaraoglou D., 2010, Comparison between GPS sea surface heights, MSS models and satellite altimetry data in the Aegean Sea. Implications for local geoid improvement. In S.Mertikas (ed.), Gravity Geoid and Earth Observation GGEO2008, International Association of Geodesy Symposia, vol.135, pp 67-73.Google Scholar

  • Olgiati A., Balmino G., Sarrailh M. and Green C.M. , 1995, Gravity anomalies from satellite altimetry comparison between computation via geoid heights and via deflections of the vertical, Bulletin Geodesique, vol.69, pp 252-260. Google Scholar

  • Pavlis N., et al, 2008, An Earth Gravitational Model to Degree 2160: EGM2008, Presentation given at the 2008 European Geosciences Union General Assembly held in Vienna, Austria.Google Scholar

  • Rio M.H., Poulain P.M., et al., 2007, A Mean Dynamic Topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model, Journal of Marine Systems vol.65: pp 484-508.Google Scholar

  • Roblou L., Lyard F., Le Henaff M. and Maraldi C., 2007, X-TRACK, a new processing tool for altimetry in coastal oceans, proceedings ‘Envisat Symposium 2007’, 23-27 April 2007, Montreux, Switzerland, ESA SP-636.Google Scholar

  • Rummel R. , 1993, Principle of Satellite Altimetry and elimination of Radial Orbit Errors, Lecture Notes in Earth Sciences No 50, Springer Verlag, pp 190-241.Google Scholar

  • Sandwell D.T., 1992, Antarctic marine gravity ffeld from high-density satellite altimetry, Geophysical Journal International, vol.109, pp 437-448.Google Scholar

  • Sandwell D.T. and Smith W.H.F., 2005, Retracking ERS-1 altimeter waveforms for optimal gravity ffeld recovery, Geophysical Journal International, vol.163, pp 79-89.Google Scholar

  • Sandwell D.T. and Smith W.H.F., 2009, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, Journal of Geophysical Research, vol.114, issue B01411.Web of ScienceGoogle Scholar

  • Smith W.H.F. and Wessel P., 1990, Gridding with continuous curvature splines in tension, Geophysics, vol.55, no.3, pp 293-305.Google Scholar

  • Schutz, B.E. and Zwally H.J., 2008, Overview of the Science Results from ICEsat, Proceedings of the 16th International Workshop on Laser Ranging, Poznan.Google Scholar

  • Stenseng, L. and Andersen O.B., 2012, Preliminary gravity recovery from CryoSat-2 data in the Baffn Bay, Advances in Space Research, vol.50, issue.8, pp 1158-1163.Web of ScienceGoogle Scholar

  • Tai C.K., and Fu L.L., 1986, On crossover adjustment in satellite altimetry and its oceanographic implications, Journal of Geophysical Research, vol.91, issue C2, pp 2549-2554.Google Scholar

  • Vignudelli S., Cipollini P., Snaith H.M., Venuti F., Lyard F., Roblou L., Kostianoy A., Lebedev S. and Mamedov R., 2006, ALTICORE: an Initiative for Coastal Altimetry, International Workshop on coast and land applications of satellite altimetry, Beijing, China, July 21-22, 2006, pp 51-52.Google Scholar

  • Wessel P. and Smith W.H.F., 2012, The Generic Mapping Tools (GMT) version 4.5.8 Technical Reference & Cookbook, SOEST/NOAA. Google Scholar

About the article

Received: 2014-04-10

Accepted: 2014-08-04

Published Online: 2014-09-25

Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0012.

Export Citation

© 2014 Ioannis Mintourakis. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in