Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Detection of a sinusoidal oscillation of unknown frequency in a time series – a geodetic approach

R. Lehmann
Published Online: 2014-10-24 | DOI: https://doi.org/10.2478/jogs-2014-0015


Geodetic and geophysical time series may contain sinusoidal oscillations of unknown angular frequency. Often it is required to decide if such sinusoidal oscillations are truly present in a given time series. Here we pose the decision problem as a statistical hypothesis test, an approach very popular in geodesy and other scientific disciplines. In the case of unknown angular frequencies such a test has not yet been proposed.We restrict ourselves to the detection of a single sinusoidal oscillation in a one-dimensional time series, sampled at non-uniform time intervals.We compare two solution methods: the likelihood ratio test for parameters in a Gauss-Markov model and the analysis of the Lomb-Scargle periodogram. Whenever needed, critical values of these tests are computed using the Monte Carlo method. We analyze an exemplary time series from an absolute gravimetric observation by various tests. Finally, we compare their statistical power. It is found that the results for the exemplary time series are comparable. The LR test is more flexible, but always requires the Monte Carlo method for the computation of critical values. The periodogram analysis is computationally faster, because critical values can be approximately deduced from the exponential distribution, at least if the sampling is nearly uniform.

Keywords: data analysis; least squares spectral analysis; likelihood ratio test; Lomb-Scargle periodogram; significance

  • Andrews D.W.K. and Ploberger W., 1994, Optimal tests when a nuisance parameter is present only under the alternative, Econometrica, 62, 6, 1383-1414.CrossrefGoogle Scholar

  • Baisch S. and Bokelmann G. H. R., 1999, Spectral analysiswith incomplete time series: an example from seismology, Computers and Geosciences, 25, 739-750.Google Scholar

  • Emery W.E. and Thomson R.E., 2001, Data Analysis Methods in Physical Oceanography, Elsevier. ISBN: 0-444-50756-6.Google Scholar

  • Erol S., 2011, Time-Frequency Analyses of Tide-Gauge Sensor Data. Sensors 11:3939-3961. DOI: 10.3390/s110403939Web of ScienceCrossrefGoogle Scholar

  • Frescura F.A.M., Engelbrecht C.A. and Frank B.S., 2007, Significance Tests for Periodogram Peaks, arXiv:0706.2225 [astro-ph]. DOI: 10.1016/j.icarus.2012.06.015 http://arxiv.org/pdf/0706.2225v1. pdfCrossrefGoogle Scholar

  • Hannan E.J., 1960, Time Series Analysis, Methuen, London.Google Scholar

  • Hansen B.E., 1996, Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64, 2, 413-430.CrossrefGoogle Scholar

  • Hernandez G., 1999, Time series, periodograms, and significance, Journal of Geophysical Research, Space Physics 104, A5, 10355– 10368. DOI: 10.1029/1999JA900026 http://onlinelibrary.wiley. com/doi/10.1029/1999JA900026/abstractGoogle Scholar

  • Heslop D. and Dekkers M.J., 2002, Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation, Physics of the Earth and Planetary Interiors, 130, 103-116.Google Scholar

  • Horne J.H. and Baliunas S.L., 1986, A prescription for period analysis of unevenly sampled time series, Astrophysical Journal, Part 1, 302, 757-763. ISSN: 0004- 637XGoogle Scholar

  • Kargoll B., 2012, On the Theory and Application of Model Misspecification Tests in Geodesy, German Geodetic Commission Series C, No. 674, Munich.Google Scholar

  • Kaschenz J. and Petrovic S., 2009, A Methodology for the Identification of Periodicities in Two-dimensional Time Series, Zeitschrift für Vermessungswesen, 134, 2, 105-112.Google Scholar

  • Koch K.R., 1999, Parameter Estimation and Hypothesis Testing in Linear Models, Springer, Berlin Heidelberg New York.Google Scholar

  • Koen Ch., 1990, Significance testing of periodogram ordinates, ApJ, 348, 700-702. DOI: 10.1086/168277CrossrefGoogle Scholar

  • Lehmann R. and Koop B., 2009, Conveyance of large cruise liners – Geodetic investigation of rolling and track prediction, J Appl Geod, 3, 3, 131–141. DOI: 10.1515/JAG.2009.014CrossrefGoogle Scholar

  • Lehmann R., 2012, Improved critical values for extreme normalized and studentized residuals in Gauss-Markov models, J Geod, 86, 1137–1146. DOI: 10.1007/s00190-012-0569-0Web of ScienceCrossrefGoogle Scholar

  • Lomb N.R., 1976, Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 2, 447- 462. DOI: 10.1007/BF00648343 http://link.springer.com/article/ 10.1007%2FBF00648343CrossrefGoogle Scholar

  • MathWorks, 2013, MATLAB R2013a Documentation Center. http:// www.mathworks.de/de/help/documentation-center.html Mautz R. and Petrovic S., 2005, Erkennung von physikalisch vorhandenen Periodizitäten in Zeitreihen, Zeitschrift für Vermessungswesen, 3/2005, 156-165.Google Scholar

  • Neyman J. and Pearson E.S., 1933, On the Problem of the Most Eflcient Tests of Statistical Hypotheses, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231, 694–706, 289–337. DOI: 10.1098/rsta.1933.0009Web of ScienceCrossrefGoogle Scholar

  • Pagiatakis S.D., 1999, Stochastic significance of peaks in the least-squares spectrum, J Geod, 73, 67-78. DOI: 10.1007/s001900050220CrossrefGoogle Scholar

  • Priestley M.B., 1982, Spectral Analysis and Time series, Academic Press Inc., London. ISBN: 9780125649223Google Scholar

  • Psimoulis P., Pytharouli St., Karambalis D. and Stiros S., 2008, Potential of Global Positioning System (GPS) to measure frequencies of oscillations of engineering structures, Journal of Sound and Vibration, 318, 606–623. DOI: 10.1016/j.jsv.2008.04.036CrossrefWeb of ScienceGoogle Scholar

  • Reinhold A., 2013, Absolute und relative Schweremessungen in der Hochschule für Technik und Wirtschaft Dresden vom 09.- 12.11.2012, Technischer Bericht G4-2012-3, Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt am Main.Google Scholar

  • Roberts D.H., Lehár J. and Dreher J.W., 1987, Time Series Analysiswith CLEAN: I. Derivation of a Spectrum, Astron. J., 93, 4, 968–989.Google Scholar

  • Scargle J.D., 1982, Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data, Astrophysical Journal, Part 1, 263, 835-853. DOI: 10.1086/160554CrossrefGoogle Scholar

  • Tanizaki H., 2004, Computational Methods in Statistics and Econometrics, Marcel Dekker, New York. ISBN-13: 978-0824748043Google Scholar

  • Teunissen P.J.G., 2000, Testing theory; an introduction, 2nd edition, Series onMathematical Geodesy and Positioning, Delft University of Technology, The Netherlands. ISBN: 90-407-1975-6Google Scholar

  • Teunissen P.J.G., 2001, Adjustment theory; an introduction, 2nd edition, Series on Mathematical Geodesy and Positioning, Delft University of Technology, The Netherlands. ISBN: 90-407-1974-8Google Scholar

  • Wells D., Vaniček P. and Pagiatakis S., 1985, Least-squares spectral analysis revisited, Issue 84 of Technical Report, University of New Brunswick, Dept. of Surveying Engineering.Google Scholar

  • Vaniček P., 1969, Approximate spectral analysis by least-squares, Astrophy Space Sci, 4, 387-391.Google Scholar

  • Vaniček P., 1971, Further development and properties of the spectral analysis by least-squares, Astrophy Space Sci, 12, 10-33. DOI: 10.1007/BF00656134CrossrefGoogle Scholar

  • Yin Hui and Pagiatakis S., 2004, Least squares spectral analysis and its application to superconducting gravimeter data analysis, Geo-spatial Information Science, 7, 4, 279-283. DOI: 10.1007/BF02828552 CrossrefGoogle Scholar

About the article

Received: 2014-02-11

Accepted: 2014-09-28

Published Online: 2014-10-24

Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0015.

Export Citation

©2014 R. Lehmann. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in