Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Sub and superharmonics of the lunar nodal tides and the solar radiative forcing in global sea level changes

H. Bâki Iz
  • Corresponding author
  • Dept. of Land Surveying and Geo-Informatics The Hong Kong Polytechnic University, Hong Kong, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-10 | DOI: https://doi.org/10.2478/jogs-2014-0016


The working hypothesis of this study is that periodic lunar nodal tides and almost periodic solar radiation variations influence sea level changes through their harmonic beating of nearby natural and/or forced broadband oscillations of the sea level at multi-decadal frequencies. The presence of the harmonics of the lunar nodal tides and the solar radiation variations, including the pole tides, is investigated by modeling and estimating the amplitudes of the corresponding periodicities in 27 globally distributed long tide gauge records. Statistically significant signatures of sub and superharmonics of lunar nodal tides and forced sea level variations due to solar radiation are detected in all station records.Meta-analysis of the harmonic amplitudes from all stations reveals that the effect sizes are statistically significant and provide evidence for the harmonic beating of sea level changes as a global phenomenon. Consequently, the compounding of the lunar nodal tides and forced sea level changes due to solar radiation with other broadband natural and forced sea level oscillations is a plausible explanation for the recent sea level accelerations and decelerations detected by satellite altimetry measurements and long tidal records.

Keywords: Climate change; Lunar nodal subharmonics and superharmonics; Sea level rise; Satellite altimetry; Solar radiation; Tide gauge; Variable acceleration

  • Burg J.P., 1967, Maximum Entropy Spectral Analysis, Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, Oklahoma.Google Scholar

  • Chambers D.P., Merrifield M.A. and Nerem R. S., 2012, Is there a 60- year oscillation in global mean sea level? Geophysical Research Letters 39:18.Web of ScienceGoogle Scholar

  • Currie R.G., 1987, Examples and implications of 18.6- and 11-yr terms in world weather records. In: Rampino M.R., Sanders J.E., NewmanW. S., Konigsson L.-K. (Eds.), Climate: History, Periodicity, and Predictability. International Symposium held at Barnard College, Columbia University, New York, 21–23 May 1984 (R.W. Fairbridge Festschrift) Van Nostrand Reinhold, New York, NY, pp. 378–403, 588pp. (Chapter 22).Google Scholar

  • Church J. and White N. J., 2006, A 20th century acceleration in global sea level rise, Geophys. Res. Lett., 33, L01602.Google Scholar

  • Douglas B.C., 1992, Global sea level acceleration, J. Geophys. Res., 97, 12,699–12,706.Google Scholar

  • Douglas B.C., 1991, Global sea level rise. Journal of Geophysical Research 96(C4):6981-6992.CrossrefGoogle Scholar

  • Ellis P.D., 2010, The Essential Guide to Effect Sizes: An Introduction to Statistical Power, Meta-Analysis and the Interpretation of Research Results. Cambridge University Press.Google Scholar

  • Goodman S.N., 1999, Toward evidence-based medical statistics. 1: The P value fallacy, Ann Intern Med., 130(12):995-1004.Google Scholar

  • Holgate S.J. and Woodworth P.L., 2004, Evidence for enhanced coastal sea level rise during the 1990s, Geophys. Res. Lett. 31, L07305.Google Scholar

  • Houston J.R. and Dean R.G., 2011, Sea-Level Acceleration Based on U.S. Tide Gauges and Extensions of Previous Global-Gauge Analyses Journal of Coastal Research, 27, 409 – 417.Web of ScienceGoogle Scholar

  • Hildreth G. and Lu T., 1960,Demand relationswith autocorrelated disturbances, Technical Bulletin 276, Michigan State University Agricultural Experiment.Google Scholar

  • IPCC ,2007, Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar

  • İz H.B., 2008: Polar Motion Modeling, Analysis, and Prediction with Time Dependent Harmonic Coeflcients Journal of Geodesy, Vol. 82, pp. 871–881.Web of ScienceGoogle Scholar

  • İz H.B. 2006, How do Unmodeled Systematic MSL Variations Affect Long Term Sea Level Trend Estimates from Tide Gauge Data? Journal of Geodesy, Vol. 80, No.1, pp. 40-46.Google Scholar

  • İz H.B. and H.M. Ng, 2011, Empirical Modeling and Impact of Transient Effects on theMean Sea Level Trend Estimates from the Global Tide Gauge Data, Journal of Geodetic Science, 1(3), pp. 221-232.Google Scholar

  • İz H.B., Berry L., Koch M., 2012, Modeling regional sea level rise using local tide gauge data, Journal of Geodetic Science, Vol. 2, Issue 3, pp. 188–199.Google Scholar

  • İz H.B., Ding X.L., Shum C.K., 2013, Global Sea Level Trends in the Presence of Variable Sea Level Velocities, and Variable Accelerations, Journal of Geodetic Science, Vol. 3, Issue 2, pp. 127–135Google Scholar

  • Jevrejeva S., Moore J.C., Grinsted A, and Woodworth P. L., 2008, Recent global sea level acceleration started over 200 years ago? GRL, Vol. 35.Google Scholar

  • Keeling C. D., and Whorf T. P., 1997, Possible forcing of global temperature by oceanic tides. Proc. Natl. Acad. Sci., 94, 8321–8328.Google Scholar

  • MunkW., Dzieciuch M., Jayne S., 2002, Millennial Climate Variability: Is There a Tidal Connection? J. Climate, 15, 370–385.Web of ScienceGoogle Scholar

  • Neter J.M., Kutner H., Nachtsheim C.J. and Wasserman M., 1996, Applied linear statistical models, Richard D. Irwin, 1408.Google Scholar

  • Permanent Service for MSL 2011, Home page, http://www.pol.ac.uk/ psmsl/, accessed on April 2011.Google Scholar

  • Schureman P., 1940, Manual of Harmonic Analysis and Prediction of Tides U. S. Department of Commerce, Washington, pgs. 317.Google Scholar

  • Yndestad H., 2006, The influence of the lunar nodal cycle on Arctic climate. ICES. Journal of Marine Science, 63: 401 – 420.Google Scholar

  • Yndestad H., Turrell W.R., Ozhigin V., 2008, Lunar nodal tide effects on variability of sea level, temperature, and salinity in the Faroe- Shetland Channel and the Barents Sea, Deep Sea Research Part I: Oceanographic Research Papers, Vol. 55, Issue 10, October 2008, pp 1201–1217.Web of ScienceGoogle Scholar

  • Woodworth P. L., 1990, A search for accelerations in records of European mean sea level. Int. J. Climatol., 10: 129–143.Google Scholar

  • Woodworth P. L., White N. J., Jevrejeva S., Holgate S. J., Church J. A. and GehrelsW. R., 2009, Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol., 29: 777– 789.Web of ScienceGoogle Scholar

  • Watson P. J., 2011, Is There Evidence of Acceleration inMean Sea Level Rise around Mainland Australia? Journal of Coastal Research, 27, 368 – 377. Web of ScienceGoogle Scholar

About the article

Received: 2014-04-29

Accepted: 2014-11-05

Published Online: 2014-12-10

Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0016.

Export Citation

©2014 H. Bâki Iz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in