Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

The development of physical geodesy during 1984-2014 – A personal review

Lars E. Sjöberg
Published Online: 2015-04-06 | DOI: https://doi.org/10.1515/jogs-2015-0003

Abstract

This article is a personal review of the development of physical geodesy during 1984-2014. The period is characterized by an intensive advance in both data and theory to meet the growing technical demands in GPS/GNSS applications and scientific needs in geoscience. As a result,many parts of theworld are nowmapped with a 1cmdetailed geoid model, and the global long- to mediumwavelengths of the gravity field and geoid are homogeneously determined to 1 mGal and 1 cm by satellite-only dedicated satellite gravity missions. The future can expect to see even higher demands for accuracy and reliability to satisfy the specifications for a pure geoid model based vertical datum.

Keywords: geoid; physical geodesy; quasigeoid; topographic bias

References

  • Amante C, Eakins BW, 2009, ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24Google Scholar

  • Ågren J, Sjöberg L E, 2013, Errors in geoid and quasigeoid models as propagated from systematic uncertainties in the digital elevation model. Presented at the IAG Conference, Potsdam, October 1-6, 2013Google Scholar

  • Ågren J, Sjöberg L E, 2014, Investigations of the requirements for a future 5mmquasigeoid model over Sweden. In UMarti (Ed.): Gravity, geoid and height systems, Springer Symposia, pp. 143-150.Google Scholar

  • Ågren J, Sjöberg L E and Kiamehr R, 2009, The new gravimetric geoid model KTH08 over Sweden. J of Applied Geodesy 3: 143-153Google Scholar

  • Bagherbandi M, Sjöberg L E, 2013, Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0, Earth-Science Reviews 117(2013): 29-39Google Scholar

  • Bjerhammar A, 1962, Gravity reduction to an internal sphere. Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden Bjerhammar A, 1973, Theory of errors and generalized matrix inverses. Elsevier Scientific Publ. Co.Google Scholar

  • Dayoub N, Edwards S J, More P, 2012, The Gauss-Listing potential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86: 681-694Google Scholar

  • Ellmann A, Sjöberg LE, 2004, Ellipsoidal correction for the modified Stokes formula. Boll Geod Sci Aff 63: 153-172Google Scholar

  • Ellmann A, Vanicek P, 2007, UNB application of Stokes-Helmert‘s approach to geoid computation, J Geodyn 43: 200-2013CrossrefGoogle Scholar

  • Flury J, Rummel R, 2009, On the geoid-quasigeoid separation in mountain areas. J Geod 83: 829-847Google Scholar

  • Forsberg R, 1990, A new high-resolution geoid of the Nordic area. In Rapp R H, Sanso F (Eds.): Determination of the geoid. IAG Symposium 106, SpringerGoogle Scholar

  • Forsberg R, 1993, Modelling the fine structure of the geoid: methods, data requirements and some result. Surveys in Geophys 14: 403- 418Google Scholar

  • Forsberg R, 1999, The NKG-1996 geoid. In Jonsson B (Ed.): Proc. 13th general meeting of the NKG, The National Land Survey,Gävle, SwedenGoogle Scholar

  • Forsberg R, 2001, Development of a Nordic cm-geoid – with basics of geoid determination. In Harsson B G (Ed.): Lecture notes for NKGautumnschool, 28 Aug.-2 Sept., 2000, Fevik, Norway, Statens Kartverk, Hönefoss, NorwayGoogle Scholar

  • Heiskanen WA, Moritz H, 1967, Physical Geodesy, W H Freeman and Co, San Francisco and LondonGoogle Scholar

  • Krarup T, 1969, A contribution to the mathematical foundation of physical geodesy. Geodaetsk Insititut, Meddelelse No. 44, Copenhagen. Also in K Borre (Ed.):Mathematical Foundation of Geodesy- Selected papers of T Krarup, Springer, 2006.Google Scholar

  • Martinec Z, Matyska C, Grafarend E W, Vanicek P, 1993, On Helmert’s 2nd condensation method. Manuscr Geod 18: 417-421Google Scholar

  • Molodensky MS, Eremeev VF, Yurkina MI, 1962, Methods for Study of the External Gravitational Field and Figure of the Earth. Tranls. From Russian (1960), Israel program for Scientific Translations, Jerusalem, IsraelGoogle Scholar

  • Moritz H, 1980, Advanced Physical geodesy. Herbert Wichmann Verlag, KarlsruheGoogle Scholar

  • Moritz H, 1984, The geodetic reference system 1980. Bull Geod 58(3): 388-398CrossrefGoogle Scholar

  • Moritz H, 1990, The figure of the earth. Wichmann, KarlsruheGoogle Scholar

  • Pavlis N K., Factor K, and Simon A. Holme S A, 2006, Terrain-Related Gravimetric Quantities Computed for the Next EGM. Presented at the 1st International symposium of the International gravity service 2006, August 28-September 1, Istanbul, Turkey.Google Scholar

  • Pavlis N A, Simon A H, Kenyon S C, Factor J K, 2012, The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). JGR 117, B04406Google Scholar

  • Rummel R, Sjöberg L, Rapp R H, 1977, The determination of gravity anomalies from geoid heights. Dept Geod Sci Report No. 269,OSU, Columbus, OHGoogle Scholar

  • Sansó F, Sideris, M G (Eds.), 2013, Geoid determination - Theory and Methods. SpringerGoogle Scholar

  • Sideris M, Forsberg R, 1990, Review of prediction methods in mountainous regions. In Rapp, R H, Sanso F (Eds.): Determination of the geoid, present and future, IAG Symposia 106, Springer.Google Scholar

  • Sjöberg LE, 1975, On the Discrete Boundary Value Problem of Physical Geodesy with harmonic Reduction to an Internal Sphere. Ph.D. Dissertation, KTH, StockholmGoogle Scholar

  • Sjöberg L E, 1977, On the Errors of Spherical Harmonic Developments of Gravity at the Surface of the Earth. Department of Geodetic Science, Report No 257, OSU, Columbus, OH.Google Scholar

  • Sjöberg LE, 1978, A Comparison of Bjerhammar’s Methods and Collocation in Physical Geodesy. Dept Geodetic Science Report No. 273, OSU, Columbus, OHGoogle Scholar

  • Sjöberg L E, 1981, Least Squares Combination of Satellite and Terrestrial Data in Physical Geodesy. Ann. Geophys., 37(1): 25-30Google Scholar

  • Sjöberg L E, 1982, On the Recovery of Geopotential Coeflcients using Satellite-to-Satellite Range-Rate Data on a Sphere. Bull Geod 56(1): 27-39CrossrefGoogle Scholar

  • Sjöberg LE, 1984a, Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coeflcient errors. manuscr geod 9: 209-229Google Scholar

  • Sjöberg LE, 1984b, Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for errors of truncation, potential coeflcients and gravity data. Dept of Geodesy Rep No 27, Univ of Uppsala, Uppsala, Sweden Google Scholar

  • Sjöberg LE, 1991, Refined least squares modification of Stokes’ formula. manuscr geod 16: 367-375Google Scholar

  • Sjöberg LE, 1999, The IAG approach to the atmospheric geoid correction in Stokes formula and a new strategy, J. of Geodesy, 73(7):362- 366Google Scholar

  • Sjöberg LE, 2000, On the topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations. J Geod 74(2): 255-268Google Scholar

  • Sjöberg L E, 2003a, A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77: 459-464Google Scholar

  • Sjöberg LE, 2003b, A computational scheme to model the geoid by the modified Stokes’s formula without gravity reductions. J Geod 77(2003): 423-432Google Scholar

  • Sjöberg LE, 2003c, A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J. Geod 77: 94-100Google Scholar

  • Sjöberg LE, 2003d, The ellipsoidal corrections to order e2 of geopotential coeflcients and Stokes’ formula. J Geod 77: 139-147Google Scholar

  • Sjöberg LE, 2004, The effect on the geoid of lateral topographic density variations. J Geod 78:34-39Google Scholar

  • Sjöberg LE, 2005, Discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78: 645-653Google Scholar

  • Sjöberg LE, 2007, The topographic bias by analytical continuation in physical geodesy. J Geod 81: 345-350Google Scholar

  • Sjöberg LE, 2009a, The terrain correction in gravimetric geoid determination – is it needed? Geophys J Int 176:14-18Google Scholar

  • Sjöberg LE, 2009b, On the topographic bias in geoid determination by the external gravity field, J Geod 83:967-972Google Scholar

  • Sjöberg LE, 2009c, Solving the topographic bias as an Initial Value Problem. Art. Sat. 44 (3):77-84Google Scholar

  • Sjöberg LE, 2009d, Solving Vening-Meinesz-Moritz inverse problem in isostasy, Geophys. J Int. 179: 1527-1536Google Scholar

  • Sjöberg L E, 2010, A strict formula for geoid-to-quasigeoid separation. J Geod 84: 699-702Google Scholar

  • Sjöberg L E, 2011a, Quality estimates in geoid computation by EGM08. JGS 1(2011): 361-366Google Scholar

  • Sjöberg L E, 2011b, Local least squares spectral filtering and combination by harmonic functions on the sphere. J Geod Sci 1(2011):355- 360Google Scholar

  • Sjöberg L E, 2012, The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud Geophys Geod 56: 929-933CrossrefGoogle Scholar

  • Sjöberg LE, 2013a, The geoid or quasigeoid- which reference surface should be preferred for a national height system? J Geod Sci 3: 103-109Google Scholar

  • Sjöberg L E, 2013b, New solutions for the geoid potential W0 and the Mean Earth Ellipsoid dimensions. J Geod Sci 3(2013): 258-265Google Scholar

  • Sjöberg, L E, 2013c, On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy, Geophys J Int 193: 1277-1282CrossrefGoogle Scholar

  • Sjöberg L E, 2014, On the topographic effects by Stokes’ formula. J Geod Sci 4: 130-135Google Scholar

  • Sjöberg L E, 2015, The secondary indirect topographic effect in physical geodesy, Stud Geophys Geod (on-line)CrossrefGoogle Scholar

  • Sjöberg L E, Bagherbandi M, Tenzer R, 2015, On gravity inversion by the no-topography and rigorous isostatic gravity anomalies, Pure and Appl. Geophys. (on-line)Google Scholar

  • Sjöberg L E, Ågren J, 2002, Some problems in the theory used for the NKG geoid model. In M. Poutanen and H. Suurmäki (Eds.): Proc. 14th General Meeting of the Nordic Geodetic Commission, Publ. from the Finnish Geodetic Institute, 2002, pp. 121-130.Google Scholar

  • Sjöberg L E, Bagherbandi M, 2011, A method of Estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys (2011)59(3): 502-525Google Scholar

  • Tenzer R, Bagherbandi M, 2012, Reformulation of the Vening Meinesz-Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3: 918-929CrossrefGoogle Scholar

  • Tscherning C C, 1983, Determination of a (quasi) geoid for the Nordic countries from heterogeneous data using collocation. In: Proc. 9th General Meeting of the NKG, Sept 1982, Swedish National Land Survey, Gävle, Sweden.Google Scholar

  • Tscherning C C, Forsberg R, 1986, Geoid determination in the Nordic countries- a staus report. In Kakkuri J (Ed.): Proc. 10th general Meeting of the NKG, Helsinki, 29 Sept.- 3 Oct., 1986, Finnish Geodetic Institute, HelsinkiGoogle Scholar

  • Tziavos I N, Sideris M, 2013, Topographic reductions in gravity and geoid modeling, In: Sansó and Sideris, M (Eds.) Geoid determination - Theory and Methods, Lecture Notes in Earth System Sciences, Springer, Ch. 8.Google Scholar

  • Vajda P, Vaníček P, Meurers B, 2006, A new physical foundation for anomalous gravity. Stud Geophys Geod 50(2): 182-216CrossrefGoogle Scholar

  • Vanicek P, Kingdon R and Santos, 2012, Geoid versus quasigeoid: a case of physics versus geometry, Contr. Geo- phys. Geod. 42, 1, 101-117.Google Scholar

  • aníček P, Kleusberg A, 1987, The Canadian geoid – Stokesian approach. manusc geod 12: 86-98Google Scholar

  • Vaníček P, Sjöberg L, 1991, Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels, J Geophys Res 96(B4): 6529-6540CrossrefGoogle Scholar

  • Vaníček P et al., 2013, Testing Stokes-helmert geoid model computation on a synthetic gravity field: experiences and shortcomings. Stud Geophys Geod 57: 369-400CrossrefGoogle Scholar

  • Wang Y M, Rapp R H, 1990, Terrain effects on geiod undulation computations. Manuscr Geod 15: 23-29Google Scholar

  • Wenzel H-G, 1981, Zur Geoid bestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit hilfe von Integralformeln. ZfV 106(3): 102- 111Google Scholar

  • Wenzel H-G, 1982, Geoid computation by least squares spectral combination using integral kernels. Presented paper, IAG General Meting, Tokyo.Google Scholar

  • Wong L, Gore R, 1969, Accuracy of geoid heights from modified Stokes kernels. Geophys J R astr Soc 18: 81-91CrossrefGoogle Scholar

  • Yildiz H, Forsberg R, Ågren J, Tscherning CC, Sjöberg LE, 2012, Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geod Sci 2(2012): 53-64.Google Scholar

  • Yionoulis, S M, Pisacane, V L, 1985, Geopotential research mission: status report. IEEE Transactions on Geoscience and Remote sensing, Vol. GE-23 (4) Google Scholar

About the article

Received: 2014-11-05

Accepted: 2015-02-26

Published Online: 2015-04-06


Citation Information: Journal of Geodetic Science, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2015-0003.

Export Citation

© 2015 Lars E. Sjöberg. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in