Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

The Uganda Gravimetric Geoid Model 2014 Computed by The KTH Method

L. E. Sjöberg
  • Division of Geodesy and Satellite Positioning, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Gidudu
  • Department of Geomatics and Land Management, Makerere University, P.O Box 7062 Kampala, Uganda
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Ssengendo
  • Department of Geomatics and Land Management, Makerere University, P.O Box 7062 Kampala, Uganda, Division of Geodesy and Satellite Positioning, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-12 | DOI: https://doi.org/10.1515/jogs-2015-0007


For many developing countries such as Uganda, precise gravimetric geoid determination is hindered by the low quantity and quality of the terrestrial gravity data. With only one gravity data point per 65 km2, gravimetric geoid determination in Uganda appears an impossible task. However, recent advances in geoid modelling techniques coupled with the gravity-field anomalies from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission have opened new avenues for geoid determination especially for areas with sparse terrestrial gravity. The present study therefore investigates the computation of a gravimetric geoid model overUganda (UGG2014) using the Least Squares Modification of Stokes formula with additive corrections. UGG2014 was derived from sparse terrestrial gravity data from the International Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digital Elevation Model from CGIAR-CSI and the GOCE-only global geopotential model GO_CONS_GCF_2_TIM_R5. To compensate for the missing gravity data in the target area, we used the surface gravity anomalies extracted from the World Gravity Map 2012. Using 10 Global Navigation Satellite System (GNSS)/levelling data points distributed over Uganda, the RMS fit of the gravimetric geoid model before and after a 4-parameter fit is 11 cm and 7 cm respectively. These results show that UGG2014 agrees considerably better with GNSS/levelling than any other recent regional/ global gravimetric geoid model. The results also emphasize the significant contribution of the GOCE satellite mission to the gravity field recovery, especially for areas with very limited terrestrial gravity data.With an RMS of 7 cm, UGG2014 is a significant step forward in the modelling of a “1-cm geoid” over Uganda despite the poor quality and quantity of the terrestrial gravity data used for its computation.

Keywords: Geoid; KTH method; least squares modification; Stokes’ formula; Uganda


  • Ågren J., 2004, Regional Geoid Determination Methods for the Era of Satellite Gravimetry: Numerical investigations using Synthetic Earth Gravity Models, PhD Thesis, Royal Institute of Technology (KTH), Sweden.Google Scholar

  • Ågren J. and Sjöberg L.E., 2004, Comparisons of some methods for modifying Stokes’ formula in the GOCE era, Proceedings of the Second International GOCE user Workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy, 8-10March, 2004 (ESA SP-569, June, 2004)Google Scholar

  • Ågren J, Barzaghi R., Carrion D., Denker H., Duquenne H, Grigoriadis V.N., Kiamehr R., Sona G., Tscherning C.C. and Tziavos I.N., 2009a, Different geoid computation methods applied on a test dataset: results and considerations. http://w3.uniroma1.it/Hotine-marussi_ symposium_2009/SubAbs.aspGoogle Scholar

  • Ågren J., Sjöberg L.E., Kiamehr R., 2009b, The new gravimetric quasigeoid model KTH08 over Sweden, J App. Geod., 3, 143-153Google Scholar

  • Abbak R.A., Sjöberg L.E., Ellmann A. and Ustun A., 2012, A precise gravimetric geoid model in a mountainous area with scarce gravity data: A case study in central Turkey, Stud. Geophys. Geod., 56: ixxx.Google Scholar

  • ASTER-GDEM ver2, 2014, online http://www.jspacesystems.or.jp/ ersdac/GDEM/E/index.html) (Accessed on 3rd September, 2014)Google Scholar

  • Bonvalot S., Balmino G., Briais A., Kuhn M., Peyrefitte A., Vales N., Biancale R., Gabalda G., Moreaux G., Reinquin F. and Sarrailh M., 2012, World Gravity Map., Bureau Gravimetrique International (BGI), map, CGMW-BGI-CNES-IRD Ed., ParisGoogle Scholar

  • Brockmann J.M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T. and SchuhW.D., 2014, EGM_TIM_RL05: An independent geoidwith centimeter accuracy purely based on the GOCE mission, Geophys Res. Letters, 41, 22, 8089-8099Google Scholar

  • Bruinsma S., Foerste C., Abrikosov O., Marty J.C., Rio M. H., Mulet S. and Bonvalot, S., 2013, The new ESA satellite-only gravity field model via the direct approach, Geophys Res. Letters, 40,14, 3607- 3612.Google Scholar

  • CGIAR-CSI, 2014, SRTM ver4.1 data, online http://www.cgiarcsi. org/data/srtm-90m-digital-elevation-database-v4-1 (accessed on 30th August, 2014)Google Scholar

  • Farahani H.H., Ditmar P., Klees R., Liu X., Zhao Q. and Guo J., 2013, The static gravity field model DGM-1S from GRACE and GOCE data: computation, validation and an analysis of GOCE mission’s added value, J Geod., 87:843-867Google Scholar

  • Forsberg R., 2001, Development of a Nordic cm-geoid with basics of geoid determination, In Harsson B.G. (Ed): Lecture notes for NKG autumn school, 28th August-2nd September, 2000, Fevik, NorwayGoogle Scholar

  • Förste C., Bruinsma S.L., Flechtner F., Marty J.C., Lemoine J.M., Dahle C., Abrikosov O., Neumayer K.H., Biancale R., Barthelmes F., Balmino G., 2012, A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C; presented at the AGU Fall Meeting 2012, San Francisco, USA, 3-7 Dec, Abstract No. G31B-0923, 2012Google Scholar

  • Fotopoulos, G., 2013, Combination of Heights. In: Sanso and Sideris (Eds), Geoid Determination: Theory and methods, Lecture notes in Earth system science, SpringerLink, pp 517-544Google Scholar

  • Fotopoulos G., Kotsakis C. and Sideris M.G., 1999, A new Canadian geoid model in support of levelling by GPS. Geomatica 53, 53–62. Heiskanen W.A. and Moritz H., 1967, Physical Geodesy, W H Freeman and Co, San-Francisco and LondonGoogle Scholar

  • Hirt C., Filmer M.S., and Featherstone W.E., 2010, Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia, Australian J Earth Sci., 57, 3,337-347Google Scholar

  • Hofmann-Wellenhof B. and Moritz H., 2006, Physical Geodesy 2nd Edition, SpringerWien NewYorkGoogle Scholar

  • Jekeli C., 1978, An investigation of two models for the degree variances of global covariance functions, Report No. 275, Department of Geodetic Science, The Ohio State UniversityGoogle Scholar

  • Jekeli C. and Rapp R., 1980, Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission, Department of Geodetic Science, Report No. 307, The Ohio State UniversityGoogle Scholar

  • Kaula W.M., 1963, The Investigation of the Gravitational Fields of the Moon and Planets with Artificial Satellites, Advances in Space Science and Technology, 5, 210-226Google Scholar

  • KaulaW.M., 1966, Theory of Satellite Geodesy, Blaisdell Publications, LondonGoogle Scholar

  • Kiamehr R., 2006, Precise gravimetric geoid model for Iran based on GRACE and SRTM Data and the least squares modification of Stokes’ formula with some geodynamic Interpretations. PhD Thesis, Royal Institute of Technology (KTH), SwedenGoogle Scholar

  • Kiamehr R., 2007, Qualification and refinement of the gravity database based on cross-validation approach- a case study of Iran, Acta Geod. Geophys., Hungary, 42, 3, 285-295Google Scholar

  • Kiamehr R. and Sjöberg L.E., 2005, Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran, J Geod., 79, 540–551Google Scholar

  • Kiamehr R. and Eshagh M., 2008, EGMlab, a scientific software for determining the gravity and gradient components from global geopotential models, Earth Science Informatics, 1, 93-103.Google Scholar

  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olsen T.R., 1998, The development of the joint NASA GSFC and NIMA geopotential model EGM96, NASA Technical Publication NASA/TP-1998- 206861, Goddard Space Flight Center, Greenbelt, MD, USA.Google Scholar

  • Mayer-Gürr T., et al., 2012, The new combined satellite only model GOCO03s, http://www.bernese.unibe.ch/publist/2012/pres/ Pres_GGHS2012_mayer-guerr_etal.pdfGoogle Scholar

  • Merry C.L., Blitzkow D., Abd-Elmotaal H., Fashir H.H., John S., Podmore F. and Fairhead J.D., 2005, A preliminary geoid model for Africa, A Window on the Future of Geodesy, International Association of Geodesy Symposia, 128, 374-379Google Scholar

  • Moritz H., 1976, Covariance Functions in Least Squares Collocation. Report 240, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar

  • Moritz H., 1977, On the Computation of a Global Covariance Model, Report 255, Department of Geodetic Science , Ohio State University, ColumbusGoogle Scholar

  • Moritz H., 1980, Geodetic Reference System 1980, XVII IUGG General Assembly, Canberra, December 1979, Resolution No 7.Google Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008, An Earth Gravitational Model to degree 2160: EGM2008, General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18, 200Google Scholar

  • Rummel R., 1997, Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Geodetic Boundary Value Problems in View of the One Centimetre Geoid, F. Sanso and R. Rummel (Eds.), Lecture Notes in Earth Sciences 65, 359-404Google Scholar

  • Sjöberg L.E., 1986, Comparison of Some Methods of Modifying Stokes’ formula, Boll. Geod. Sci., 45, 3, 229-248Google Scholar

  • Sjöberg L.E., 1991, Refined least squares modification of Stokes’ formula, Manu. Geod., 16, 367-375.Google Scholar

  • Sjöberg L.E., 2000, Topographic effects by the Stokes-Helmert method of the geoid and quasi-geoid determinations, J Geod., 74, 255-268.Google Scholar

  • Sjöberg L.E., 2001, Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one, J Geod., 75, 283-290.Google Scholar

  • Sjöberg L. E., 2003a, A general model for modifying Stokes’ formula and its least squares solution, J Geod., 77, 459-464Google Scholar

  • Sjöberg L.E., 2003b, A computational scheme to model the geoid by the modified Stokes formula without gravity reductions, J Geod., 77, 423-432Google Scholar

  • Sjöberg L.E., 2003c, A solution to the downward continuation effect on the geoid determined by Stokes’ formula, J Geod., 77, 94-100Google Scholar

  • Sjöberg L.E., 2003d, The ellipsoidal corrections to order e2 of geopotential coeflcients and Stokes’ formula. J Geod., 77, 139-147Google Scholar

  • Sjöberg L.E., 2003e, The correction to the modified Stokes formula for an ellipsoidal earth. In M. Santos (Ed.): Honoring the academic life of Petr Vaníček, UNB Technical Report No. 218, New Brunswick, pp. 99-110Google Scholar

  • Sjöberg L.E., 2004, A spherical harmonic representation of the ellipsoidal correction to the Modified Stokes formula, J Geod., 78, 180- 186Google Scholar

  • Sjöberg L.E., 2005, A local least-squares modification of Stokes’ formula, Stud. Geoph. Geod., 49, 23-30Google Scholar

  • Sjöberg L. E., 2007, The topographic bias by analytical continuation in physical geodesy, J Geod., 81, 345-350Google Scholar

  • Sjöberg L. E., 2008, Answers to the comments by M. Vermeer on L. E. Sjöberg (2007) “The topographic bias by analytical continuation in physical geodesy”, J Geod., 82, 451–452.Google Scholar

  • Sjöberg L. E., 2009, The terrain correction in gravimetric geoiddetermination – is it needed? Geophys J Inter., 176, 14–18.Google Scholar

  • Sjöberg L. E. and Nahavandchi H., 2000, The atmospheric geoid effects in Stokes’ formula, Geophys J Int., 140, 95-100CrossrefGoogle Scholar

  • SRTM30 data Version 2.0, 2014, online http://dds.cr.usgs.gov/srtm/ version2_1/ (accessed on 1st September, 2014).Google Scholar

  • Tscherning C.C. and Rapp R.H., 1974, Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models, Report 355, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar

  • Ulotu P.E., 2009, Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH Method. PhD Thesis, Royal Institute of Technology (KTH), SwedenGoogle Scholar

  • Vermeer M., 2008, Comment on Sjöberg (2007) “The topographic bias by analytical continuation in physical geodesy, J. Geod. 81:5, 345–350”, J of Geod., 82, 445–450.Google Scholar

  • Yi W., Rummel R. and Gruber T., 2013, Gravity field contribution analysis of GOCE gravitational gradient components, Stud. Geophy. Geod., 174-202.Google Scholar

  • Zhang K., Featherstone W., Stewart M. and Dodson A., 1998, A new gravimetric geoid for Austria. In: Second Continental Workshop on the Geoid, Reports of the Finnish Geodetic Institute, pp. 225–233. Google Scholar

About the article

Received: 2015-01-19

Accepted: 2015-03-24

Published Online: 2015-05-12

Citation Information: Journal of Geodetic Science, Volume 5, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2015-0007.

Export Citation

© 2015 R. Ssengendo et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

M F Pa’suya, N N M Yusof, A H M Din, A H Othman, Z A A Som, Z M Amin, M A C Aziz, and M A A Samad
IOP Conference Series: Earth and Environmental Science, 2018, Volume 169, Page 012089
Silja Märdla, Artu Ellmann, Jonas Ågren, and Lars E. Sjöberg
Journal of Geodesy, 2017

Comments (0)

Please log in or register to comment.
Log in