Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Comparison of precipitable water over Ghana using GPS signals and reanalysis products

A. A. Acheampong / C. Fosu / L. K. Amekudzi / E. Kaas
Published Online: 2015-11-30 | DOI: https://doi.org/10.1515/jogs-2015-0016

Abstract

Signals from Global Navigational Satellite Systems (GNSS) when integrated with surface meteorological parameters can be used to sense atmospheric water vapour. Using gLAB software and employing precise point positioning techniques, zenith troposphere delays (ZTD) for a GPS base station at KNUST, Kumasi have been computed and used to retrieve Precipitable Water (PW). The PW values obtained were compared with products from ERA-Interim and NCEP reanalysis data. The correlation coefficients, r, determined from these comparisons were 0.839 and 0.729 for ERA-interim and NCEP respectively. This study has demonstrated that water vapour can be retrieved with high precision from GNSS signal. Furthermore, a location map have been produced to serve as a guide in adopting and installing GNSS base stations in Ghana to achieve a country wide coverage of GNSS based water vapour monitoring.

Keywords: GNSS; integrated water vapour; numerical weather prediction; precipitable water; reanalysis model

References

  • Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H., 1994, GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl Met, 33(3):379- 386.CrossrefGoogle Scholar

  • Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., and Ware, R., 1992, GPS meteorology- remote sensing of atmospheric water vapor using the global positioning system. J. Geophy. Res. 97(D14):15787-15801.Google Scholar

  • Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., and Agusti-Panareda, A., 2007, Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over africa. Quart. J. Roy. Met. Soc., 133(629):2011-2027.Google Scholar

  • Bohm, J., Niell, A., Tregoning, P., and Schuh, H., 2006, Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophy. Res. Letters, 33(7).Google Scholar

  • Bokoye, A. I., Royer, A., O’Neill, N. T., Cliche, P., McArthur, L. J. B., Teillet, P. M., Fedosejevs, G., and Theriault, J-M., 2003, Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. J. Geophy. Res.: Atmospheres (1984-2012), 108(D15).Google Scholar

  • Bosy, J., Rohm,W., Sierny, J., and Kaplon, J., 2011, GNSS meteorology. TransNav-Int. J. Marine Navigat. Safety Sea Transport, pages 79- 83.Google Scholar

  • Buizza, R., 2002, Chaos and weather prediction. European Centre for Medium-Range Weather, Internal Report; Meteorological Training Course, pages 1-28.Google Scholar

  • Byun, S. H. and Bar-Sever, Y. E., 2009, A new type of troposphere zenith path delay product of the Interna- tional GNSS service. J. Geod. 83(3-4):1-7.Web of ScienceGoogle Scholar

  • Dach, R., Hugentobler, U., Fridez, P., Meindl, M., et al., 2007, Bernese GPS software version 5.0. Astronomical Institute, University of Bern, 640.Google Scholar

  • Davis, J., Herring, T., Shapiro, I., Rogers, A., and Elgered, G., 1985, Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci, 20(6):1593-1607.CrossrefGoogle Scholar

  • De Haan, S. and Van Der Marel, H., 2008, Observing three dimensional water vapour using a surface network of GPS receivers. Atmospheric Chemistry and Physics Discussions, 8:17193-17235.Google Scholar

  • El-Rabbany, A., 2002, Introduction to GPS: the Global Positioning System. Artech House Publishers, Norwood. Elgered, G., Davis, J. L., Herring, T. A., and Shapiro, I. I., 1991, Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophy. Res.: Solid Earth (1978-2012), 96(B4):6541-6555.Google Scholar

  • Gendt, G., Dick, G., Reigber, C. H., Tomassini, M., Liu, Y., and Ramatschi, M., 2003, Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J Meteo. Societ. Jap, 82(1B):360-370.Google Scholar

  • Hernandez-Pajares, M., Juan, J., Sanz, J., Ramos-Bosch, P., Rovira- Garcia, A., Salazar, D., Ventura-Traveset, J., Lopez-Echazarreta, C., and Hein, G, 2010, The ESA/UPC GNSS-lab tool (gLAB). In Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC’ 2010), ESTEC, Noordwijk, The Netherlands.Google Scholar

  • Leick, A., 2003, GPS satellite surveying. Wiley, New York.Google Scholar

  • Liou, Y-A., Teng, Y-T., Van Hove, T., and Liljegren, J. C., 2001, Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Met. 40(1):5-15.Google Scholar

  • Lynch, P., 2008, The origins of computer weather prediction and climate modeling. J. Computational Physics, 227(7):3431-3444.Web of ScienceGoogle Scholar

  • Mims, F. M., Chambers, L. H., and Brooks, D. R., 2011, Measuring total column water vapor by pointing an infrared thermometer at the sky. Bull. Amer. Met. Soc., 92(10).Web of ScienceGoogle Scholar

  • Misra, P. and Enge, P., 2011, Global Positioning System: Signals, Measurements and Performance Revised 2nd Ed. Massachusetts: Ganga-Jamuna Press.Google Scholar

  • Motell, C., Porter, J., Foster, J., Bevis, M., and Businger, S., 2002, Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes. Int. J. Remote Sensing, 23(11):2335-2339.Google Scholar

  • Niell, A. E., 1996, Globalmapping functions for the atmosphere delay at radio wavelengths. J. Geophy. Res., 101(B2):3227-3246.Google Scholar

  • Nilsson, T., Bohm, J., Wijaya, D. D., Tresch, A., Nafisi, V., and Schuh, H., 2013, Path delays in the neutral atmosphere. In Atmospheric Effects in Space Geodesy, J. Bohm and H. Schuh (eds.), pages 73- 136. Springer- Verlag Berlin Heidelberg.Google Scholar

  • Ning, T., 2012,. GPS Meteorology: With Focus on Climate Application. PhD thesis, Chalmers University of Technology. http:// publications.lib.chalmers.se/records/fulltext/157389.pdf.Google Scholar

  • Pichelli, E., Ferretti, R., Cimini, D., Perissin, D., Montopoli, M., Marzano, F. S., and Pierdicca, N., 2010, Water vapour distribution at urban scale using high-resolution numerical weather model and space- borne SAR interferometric data. Nat. Hazards Earth Syst. Sci., 10:121-132.Web of ScienceGoogle Scholar

  • Pierdicca, N., Rocca, F., Basili, P., Bonafoni, S., Cimini, D., Ciotti, P., Ferretti, R., Foster, W., Marzano, F., Mattioli, V., et al., 2009, Atmospheric water-vapour effects on spaceborne interferometric SAR imaging: data synergy and comparison with ground-based measurements and meteorological model simulations at urban scale. In Antennas and Propagation, 3rd EuCAP European Conference, 3443-3447.Google Scholar

  • Pottiaux, E., 2010, Sounding the Earth’s Atmospheric Water Vapour Using Signals Emitted by Global Navi- gation Satellite Systems. PhD thesis, Department of Physics, Earth and Life Institute, Catholic University of Louvain.Google Scholar

  • Saastamoinen, J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph Series, 15:247-251.Google Scholar

  • Sahoo, S., Bosch-Lluis, X., Reising, S. C., and Vivekanandan, J., 2013, Spatial resolution and accuracy of re- trievals of 2D and 3D water vapor fields from ground-based microwave radiometer networks. In Radio Science Meeting, US National Committee of URSIGoogle Scholar

  • Schiller, T., 2006, GNSS meteorology on moving platforms. Advances and limitations in kinematicwaterwapor estimation. Inside GNSS, 1(3):56-60.Google Scholar

  • Seeber, G., 2003, Satellite geodesy: foundations, methods, and applications. de Gruyter.Google Scholar

  • Seidel, D. J., 2002, Water vapor: Distribution and trends. Encyclopedia of Global Environmental Change, John Wiley & Sons, Ltd, Chichester.Google Scholar

  • Shuman, F. G., 1978, Numerical weather prediction. Bulletin of the American Meteorological Society, 59:5-17.Web of ScienceCrossrefGoogle Scholar

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., 2007, Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. The IPCC scientific assessment, page 996. Cambridge University Press, UK and USA.Google Scholar

  • Soos, A., 2010, Global warming and climate models. Oilprice.com. http://oilprice.com/The-Environment/Global-Warming/Global- Warming-And-Climate-Models.html Accessed on May 2014.Google Scholar

  • Thayer, G. D., 1974, An improved equation for the radio refractive index of air. Radio Sci. 9(10):803-807. USGS, 2011, Greenhouse gases. US Geodetic Survey Science Education Handout, http:// education.usgs.gov/lessons/gases.pdf. Accessed on Feb 2014.CrossrefGoogle Scholar

  • Yoshihara, T., Tsuda, T., and Hirahara, K., 2000, High time resolution measurements of precipitable water vapor from propagation delay of GPS satellite signals. EARTH PLANETS AND SPACE, 52(7):479- 494. CrossrefGoogle Scholar

About the article

Received: 2015-01-09

Accepted: 2015-11-16

Published Online: 2015-11-30


Citation Information: Journal of Geodetic Science, Volume 5, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2015-0016.

Export Citation

© 2015 A. A. Acheampong et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in