Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

GNSS-SNR water level estimation using global optimization based on interval analysis

J. Reinking
Published Online: 2016-11-28 | DOI: https://doi.org/10.1515/jogs-2016-0006

Abstract

The signal-to-noise ratio (SNR) from GNSS receivers allows computing the height of a reflecting surface by analyzing the interference pattern. In classical interference pattern technique the distance between the antenna and the reflector is derived from the multipath pattern using a one-dimensional Lomb-Scargle periodogram (LSP) which permits the estimation of constant or quasi static reflector heights only. Inwaters with tidal influence some authors used one-dimensional LSP to iteratively estimate an approximate time-dependent correction term for the variable reflector height. Other authors applied nonlinear least squares adjustment that requires choosing initial parameters what might become crucial due to the multimodality of the problem.

We suggest and apply an alternative approach that allows finding the global optimum of a multi-dimensional cost function of a common least squares adjustment based on interval analysis. This method reduces the computational efforts compared to LSP. The technique is demonstrated using a simulated data set derived fromreal measurements on the Weser river, Germany. Additionally, real data from a gauge in the North Sea is analyzed.

Keywords: global navigation satellite system; global optimization; interval analysis; sea surface height; signal-tonoise ratio

References

  • [1] Bishop G.J., Klobuchar J.A. and Doherty P.H., 1985, Multipath effects on the determination of absolute ionospheric time delay from GPS signals. Radio Sci, 20(3):388-396. doi: 10.1029/RS020i003p00388 CrossrefGoogle Scholar

  • [2] Georgiadou Y. and Kleusberg A., 1988, On carrier signal multipath effects in relative GPS positioning. Manusc Geod 13(3), 172-179. Google Scholar

  • [3] Bilich A., Larson K.M. and Axelrad P., 2008, Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. J Geophys Res, 113, B04401. doi: 10.1029/2007JB005194 CrossrefWeb of ScienceGoogle Scholar

  • [4] Larson K.,Small E.E., Gutmann E., Bilich A., Axelrad P. and Braun J., 2008, Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS solut, 12(3), 173-177. doi: 10.1007/ s10291-007-0076-6 CrossrefWeb of ScienceGoogle Scholar

  • [5] Larson K.M., Löfgren J.S. and Haas R., 2012, Coastal sea level measurements using a single geodetic receiver. Adv Space Res 51(10), 1301-1310. doi: 10.1016/j.asr.2012.04.017 Web of ScienceCrossrefGoogle Scholar

  • [6] Löfgren J., Haas R., Scherneck H. and Bos M., 2011, Three months of local sea level derived from reflected GNSS signals. Radio Sci 46(4). doi: 10.1029/2011RS004693 Web of ScienceCrossrefGoogle Scholar

  • [7] Larson K.M., Ray R.D., Nievinski F.G. and Freymueller J.T., 2013, The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geosci Remote S 10(5), 1200-1204. doi: 10.1109/LGRS.2012.2236075 CrossrefWeb of ScienceGoogle Scholar

  • [8] Löfgren J. and Haas R., 2014, Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J Adv Sig Pr 2014(1), 1687–6172. doi: 10.1186/1687-6180-2014-50 CrossrefWeb of ScienceGoogle Scholar

  • [9] Roussel N., Ramillien G., Frappart F., Darrozes J., Gay A., Biancale R et al., 2015, Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens Environ 171, 261- 277. doi: 10.1016/j.asr.2015.10.011 Web of ScienceCrossrefGoogle Scholar

  • [10] Löfgren J., Haas R. and Scherneck H., 2014, Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J Geodyn, 80, 66–80. doi: 10.1016/j.jog.2014.02.012 Web of ScienceCrossrefGoogle Scholar

  • [11] Löfgren J., 2014, Local sea level observations using reflected GNSS signals. Dissertation. Chalmers University of Technology. Google Scholar

  • [12] Lomb N.R., 1976, Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39, 447–462. doi: 10.1007/BF00648343 CrossrefGoogle Scholar

  • [13] Scargle J.D., 1982, Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical J 263, 835–853. Google Scholar

  • [14] Santamaría-Gómez A.,Watson C., Gravelle M., King M. and Wöppelmann G., 2015, Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. J Geod 89:241–258. doi: 10.1007/s00190-014-0784-y Web of ScienceCrossrefGoogle Scholar

  • [15] Strandberg J., Hobiger T. and Haas R., 2016, Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci., 51, doi:10.1002/2016RS006057. Web of ScienceCrossrefGoogle Scholar

  • [16] Nievinski F. G. and Larson K. M., 2014, Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS solut, 18(2), 309-322. doi: 10.1007/s10291-013- 0331-y Web of ScienceCrossrefGoogle Scholar

  • [17] Hansen E. and Walster G.W. (2003) Global optimization using interval analysis: revised and expanded (Vol. 264). CRC Press, Boca Raton. Google Scholar

  • [18] Vaníček P., 1969, Approximate spectral analysis by least-squares fit. Astrophys Space Sci 4 (4): 387–391. doi:10.1007/BF00651344 CrossrefGoogle Scholar

  • [19] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E., 1953, Equation of state calculations by fast computing machines. J Chem Phys 21 (1953) 1087–1092. doi: 10.1063/1.1699114 CrossrefGoogle Scholar

  • [20] Holland J.H., 1975, Adaptation in Natural and Artificial Systems. MIT Press, ISBN: 9780262581110, reprint 1992 Google Scholar

  • [21] Hansen E., 1979, Global optimization using interval analysis: the one-dimensional case. J Optim Theor Appl 29(3), 331-344. doi: 10.1007/BF00933139 CrossrefGoogle Scholar

  • [22] Hansen E., 1980, Global optimization using interval analysis: the multi-dimensional case. NumerischeMathematik 34(3), 247-270. doi: 10.1007/BF01396702 CrossrefGoogle Scholar

  • [23] Moore R.E., 1966, Interval Analysis, Prentice-Hall, Englewood Cliffs. Google Scholar

  • [24] Xu P., 2002, A hybrid global optimization method: the onedimensional case. J Comput Appl Math 147(2), 301-314, doi:10.1016/S0377-0427(02)00438-7 CrossrefGoogle Scholar

  • [25] Araya I. and Reyes V., 2015, Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects. J Glob Optim. doi: 10.1007/s10898-015-0390-4 CrossrefGoogle Scholar

  • [26] Land A.H. and Doig A.G., 1960, An automatic method of solving discrete programming problems. Econometrica, 28(3), 497– 520. doi: 10.1007/978-3-540-68279-0_5 CrossrefGoogle Scholar

  • [27] Xu P., 2003, A hybrid global optimization method: The multidimensional case. J Comput Appl Math 155(2), 423-446. doi: 10.1016/S0377-0427(02)00878-6 CrossrefGoogle Scholar

  • [28] Beelitz T., 2006, Eflziente Methoden zum Verifizierten Lösen von Optimierungsaufgaben und Nichtlinearen Gleichungssystemen. Dissertation, Bergische Universität Wuppertal. http://elpub.bib.uni-wuppertal.de/edocs/dokumente/ ffic/mathematik/diss2006/beelitz/dc0603.pdf. Accessed 06 October 2016. Google Scholar

  • [29] Stöcker M., 2014, Globale Optimierungsverfahren, garantiert globale Lösungen und energieeflziente Fahrzeuggetriebe. Dissertation, Technischen Universität Chemnitz. http: //www.qucosa.de/fileadmin/data/qucosa/documents/16680/ Dissertation_Martin_Stoecker.pdf. Accessed 06 October 2016. Google Scholar

  • [30] Hansen E.R. and Greenberg R.I., 1983, An interval Newton method, Appl Math Comp, 12(2), 89-98. doi: 10.1016/0096- 3003(83)90001-2 CrossrefGoogle Scholar

  • [31] Gotthardt E., 1978, Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag, Karlsruhe, Germany. Google Scholar

  • [32] Moore R.E., Kearfott R.B. and Cloud M.J., 2009, Introduction to Interval Analysis. SIAM. doi: 10.1137/1.9780898717716 CrossrefGoogle Scholar

  • [33] Chen C.Y., 2011, Extended interval Newton method based on the precise quotient set. Computing 92(4):297–315, doi 10.1007/s00607-011-0145-0 CrossrefWeb of ScienceGoogle Scholar

  • [34] Rump S.M., 1999, INTLAB - INTerval LABoratory. In: Tibor Csendes (ed), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, pp 77-104. Google Scholar

  • [35] Jaulin L., 2001, Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics, Springer, London Google Scholar

  • [36] Hansen E. and Sengupta S., Global constrained optimization using interval analysis. In: Nickel KL (ed), Interval Mathematics, Academic Press, New York, 1980, pp.25 –47. Google Scholar

  • [37] Alonso-Arroyo A., Camps A., Park H., Pascual D., Onrubia R. and Martin F., 2014, Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3198-3209, doi: 10.1109/TGRS.2014.2371540 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-09-07

Accepted: 2016-10-07

Published Online: 2016-11-28


Citation Information: Journal of Geodetic Science, Volume 6, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2016-0006.

Export Citation

© 2016 J. Reinking. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Reinking, Roggenbuck, and Even-Tzur
Remote Sensing, 2019, Volume 11, Number 9, Page 1027
[2]
Joakim Strandberg, Thomas Hobiger, and Rüdiger Haas
GPS Solutions, 2019, Volume 23, Number 3
[3]
Ole Roggenbuck and Jörg Reinking
Marine Geodesy, 2019, Volume 42, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in