Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

RFCAG2013: Russian-Finnish comparison of absolute gravimeters in 2013

J. Mäkinen / R.A. Sermyagin / I.A. Oshchepkov / A.V. Basmanov / A.V. Pozdnyakov / V.D. Yushkin / Yu.F. Stus
  • Siberian Branch of Russian Academy of Sciences, Institute of Automation and Electrometry (IAE SB RAS), Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D.A. Nosov
  • Siberian Branch of Russian Academy of Sciences, Institute of Automation and Electrometry (IAE SB RAS), Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/jogs-2016-0008

Abstract

In June–July 2013,we performed a comparison of five absolute gravimeters of different types. The gravimeters were the FG5X-221 of the FGI, the FG5-110 and GBL-M 002 of the TsNIIGaiK, the GABL-PM of the IAE SB RAS, and the GABL-M of the NIIMorGeofizika (Murmansk, Russia). The three last-mentioned are field-type portable gravimeters made by the Institute of Automation and Electrometry in Novosibirsk, and this is the first international comparison for them. This Russian-Finnish Comparison of Absolute Gravimeters RFCAG2013 was conducted at four sites with different characteristics: at the field sites Pulkovo and Svetloe near St. Petersburg, and at the laboratory sites TsNIIGaIK in Moscow and Zvenigorod near Moscow. At the TsNIIGAiK site and at Zvenigorod two piers were used, such that altogether six stations were occupied. The FG5X- 221 provides the link to the CCM.G-K2 Key Comparison in Luxembourg in November 2013. Recently, the Consultative Committee for Mass and Related Quantities and the International Association of Geodesy drafted a strategy on how to best transmit the results of Key Comparisons of absolute gravimeters to benefit the geodetic and geophysical gravimetric community. Our treatment of the RFCAG2013 presents one of the first practical applications of the ideas of the strategy document, andwe discuss the resulting uncertainty structure. Regarding the comparison results, we find the gravimeters show consistent offsets at the quite different sites. All except one gravimeter are in equivalence.

Keywords: absolute gravimeter; field absolute gravimeter; gravimeter comparison; key comparison

References

  • [1] Francis O., Baumann H., Ullrich C., Castelein S., Van Camp M., de Sousa M., Melhorato R., Li C., Xu J., Su D., Wu S., Hu H., Wu K., Li G., Li Z., Hsieh W., Pálinkás V., Kostelecký J., Mäkinen J., Näränen J., Merlet S., Dos Santos F., Gillot P., Hinderer J., Bernard J., Le Moigne N., Fores B., Gitlein O., Schilling M., Falk R., Wilmes H., Germak A., Biolcati E., Origlia C., Iacovone D., Baccaro F., Mizushima S., De Plaen R., Klein G., Seil M., Radinovic R., Sekowski M., Dykowski P., Choi I., Kim M., Borreguero A., Sainz-Maza S., Calvo M., Engfeldt A., Agren J., Reudink R., Eckl M., van WestrumD., Billson R. and Ellis B., 2015, CCM.G-K2 key comparison, Metrologia, 52(1A), 07009. Web of ScienceGoogle Scholar

  • [2] Mäkinen J., Bilker-Koivula M., Ruotsalainen H., Kaftan V., Gusev N., Korolev N., Yushkin V., Falk R. and Gitlein O., 2013, Comparisons of Russian, Finnish, and German absolute gravimeters 2004–2007 and connections to International Comparisons of Absolute Gravimeters, IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2013), Saint Petersburg, Russia, 17–20 September 2013. Google Scholar

  • [3] Yushkin V.D., Sapunov A.N., Stus Yu.F., Kalish E.N., Bunin I.A. and Nosov D.A., 2012, Measurements with the new GABL-M field ballistic gravimeter under tundra conditions, Measurement Techniques, 54, 1111–1116. Google Scholar

  • [4] Timmen L., 2003, Precise definition of the effective height of free-fall absolute gravimeters, Metrologia, 40, 62–65. CrossrefGoogle Scholar

  • [5] Niebauer T.M., Sasagawa G.S., Faller J.E., Hilt R. and Klopping F., 1995, A new generation of absolute gravimeters, Metrologia, 32, 159–180. CrossrefGoogle Scholar

  • [6] Niebauer T.M., Billson R., Ellis B., van Westrum D. and Klopping F., 2011, Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter, Metrologia, 48, 154–163. Web of ScienceCrossrefGoogle Scholar

  • [7] Van Ruymbeke M., 1991, A new feedback system for instruments equipped with a capacitive transducer. In J. Kakkuri (Ed.), Proc. of the XI International Symposium on Earth Tides, Helsinki, Finland, July 3–August 5, 1989. E. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, 51–60. Google Scholar

  • [8] Mäkinen J., 2011, Gravity gradients above piers in absolute gravimetry: use remove-restore for the pier attraction. In V.G. Peshekhonov (Ed.), Proceedings of the IAG Symposium on Terrestrial Gravimetry (TG-SMM2010), Saint Petersburg, Russia, 22–25 June 2010, Elektropribor, Saint Petersburg, 90–97. Google Scholar

  • [9] Boedecker, G., 1988, International Absolute Gravity Basestation Network (IAGBN), Absolute Gravity Observations Data Processing Standards & Station Documentation, BGI Bull. Inf., 63, 51–57. Google Scholar

  • [10] Petit G. and LuzumB., 2010, IERS Conventions 2010, IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. Google Scholar

  • [11] Lyard F., Lefevre F., Letellier T. and Francis O., 2006., Modelling the global ocean tides: modern insights from FES2004, Ocean Dyn., DOI 10.1007/s10236-006-0086-x. CrossrefGoogle Scholar

  • [12] Kennett B.L.N. and Engdahl E.R., 1991, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465. Google Scholar

  • [13] Carrère L., Lyard F., Cancet M., Guillot A. and Roblou L., 2012, FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry, Proceedings of the Meeting "20 Years of Altimetry", Venice, 24 to 29 September, 2012. Google Scholar

  • [14] Spiridonov E., Vinogradova O., Boyarskiy E. and Afanasyeva L., 2015, ATLANTIDA3.1_2014 forWindows: a software for tidal prediction, Bull. Inf. Marées Terrestres, 149, 12062–12081. Google Scholar

  • [15] Pálinkáš V., Liard J. and Jiang Z., 2012, On the effective position of the free-fall solution and the self-attraction effect of the FG5 gravimeters, Metrologia, 49, 552–559. Web of ScienceGoogle Scholar

  • [16] Niebauer T.M., Billson R., Schiel A., van Westrum D. and Klopping F., 2013, The self-attraction correction for the FG5X absolute gravity meter, Metrologia, 50, 1–8, doi:10.1088/0026- 1394/50/1/1 Web of ScienceCrossrefGoogle Scholar

  • [17] van WestrumD. and Niebauer T.M., 2003, The diffraction correction for absolute gravimeters, Metrologia, 40 258–263. Google Scholar

  • [18] Measurement comparisons in the CIPM MRA. CIPM MRA-D-05, Version 1.5, March 2014, http://www.bipm.org/utils/common/ documents/CIPM-MRA/CIPM-MRA-D-05.pdf Google Scholar

  • [19] Marti U., Richard P., Germak A., Vitushkin L., Pálinkáš V. and Wilmes H., 2014, CCM–IAG strategy for metrology in absolute gravimetry, role of CCM and IAG, 11 March 2014, http://www.bipm.org/wg/CCM/CCM-WGG/Allowed/2015- meeting/CCM_IAG_Strategy.pdf. Google Scholar

About the article

Received: 2016-03-29

Accepted: 2016-10-22

Published Online: 2016-11-23


Citation Information: Journal of Geodetic Science, Volume 6, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2016-0008.

Export Citation

© 2016 J. Mäkinen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in