Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Scaled weighted total least-squares adjustment for partial errors-in-variables model

J. Zhao
Published Online: 2016-12-16 | DOI: https://doi.org/10.1515/jogs-2016-0010


Scaled total least-squares (STLS) unify LS, Data LS, and TLS with a different choice of scaled parameter. The function of the scaled parameter is to balance the effect of random error of coefficient matrix and observation vector for the estimate of unknown parameter. Unfortunately, there are no discussions about how to determine the scaled parameter. Consequently, the STLS solution cannot be obtained because the scaled parameter is unknown. In addition, the STLS method cannot be applied to the structured EIV casewhere the coefficient matrix contains the fixed element and the repeated random elements in different locations or both. To circumvent the shortcomings above, the study generalize it to a scaledweighted TLS (SWTLS) problem based on partial errors-in-variable (EIV) model. And the maximum likelihood method is employed to derive the variance component of observations and coefficient matrix. Then the ratio of variance component is proposed to get the scaled parameter. The existing STLS method and WTLS method is just a special example of the SWTLS method. The numerical results show that the proposed method proves to bemore effective in some aspects.

Keywords: maximum likelihood; partial errors-in-variable model; scaled total least squares; scaled weighted total least squares; weighted total least squares; variance component


  • [1] Akyilmaz O., 2007, Total least-squares solution of coordinate transformation, Survey Review, 39, 68-80. Google Scholar

  • [2] Amiri-Simkooei A.R., 2007, Least-squares variance component estimation: theory and GPS applications, PhD thesis, Delft University of Technology, Publication on Geodesy, 64, Netherlands Geodetic Commission, Delft. Google Scholar

  • [3] Amiri-Simkooel A.R. and Jazaeri S., 2012, Weighted total least squares formulated by standard least squares theory, J.Geod.Sci., 2, 2, 113-124. Google Scholar

  • [4] Crocetto N., Gatti M. and Russo P., 2000, Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups, J. Geod., 74, 447-457. Google Scholar

  • [5] Fang X., 2011, Weighted total least squares solution for application in geodesy, Ph.D thesis, Leibniz University Hanover. Google Scholar

  • [6] Fang X., 2013, Weighted total least squares: necessary and sufficient conditions, fixed and random parameters, J.Geod., 87, 733-749. Web of ScienceGoogle Scholar

  • [7] Fang X., 2014, A total least squares solution for geodetic datum transformations, Acta Geod Geophys, 49, 189-207. Google Scholar

  • [8] Felus F. and Burtch R., 2009, On symmetrical three-dimensional datum conversion, GPS Solu, 13, 1, 65-74. Google Scholar

  • [9] Golub G. and Van Loan C., 1980, An analysis of the total leastsquares problem, SIAM J.Numer.Anal., 17, 6, 883-893. CrossrefGoogle Scholar

  • [10] Grafarend E.W., 1984, Variance-covariance component estimation of Helmet type in the Gauss-Helmert model, ZFV, 1,109. Google Scholar

  • [11] Jazaeri S., Amiri-Simkooei A.R. and Sharifi, M.A., 2014, Iterative algorithm for weighted total least squares adjustment, Survey Review, 46, 334, 19-27. Google Scholar

  • [12] Koch K.R., 1986.Maximumlikelihood estimate of variance components, Bull Geod, 60, 329-338. Google Scholar

  • [13] Li B.F., Shen Y.Z. and Li W.W., 2012, The seamless model for three-dimensional datumtransformation, Science China, 55, 12, 2099-2108. Google Scholar

  • [14] Li B.F., Shen Y.Z. and Lou L.Z., 2013, Seamless multivariate aflne error-in-variables transformation and its application to map rectification, Int.J.GIS, 27, 8, 1572-1592. Google Scholar

  • [15] Magnus J.R. and Neudecker H., 2007, Matrix differential calculus with applications in statistics and econometrics, 3rd edition. John Wiley&Sons Ltd, England. Google Scholar

  • [16] Mahboub V., 2012, On weighted total least-squares for geodetic transformations, J. Geod., 86, 359-367. Web of ScienceGoogle Scholar

  • [17] Neitzel, F., 2010, Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation, J. Geod., 84:751-762. Web of ScienceGoogle Scholar

  • [18] Olwuashi O. and Eyoh A., 2012, 3D coordinate transformation using total least squares. Academic Research International, 3(1):399-405. Google Scholar

  • [19] Paige C.C. and Strakos Z., 2002, Scaled total least squares fundamentals, Numer.Math., 91:117-146. Google Scholar

  • [20] Rao C.R., 1971, Estimation of variance and covariance components-MINQUE theory, J.Multivar.Anal., 1:257-275. Google Scholar

  • [21] Schaffrin B. and Feuls Y., 2008a, On the multivariate total least-squares approach to empirical coordinate transformations. three algorithms, J. Geod, 82, 272-283. Web of ScienceGoogle Scholar

  • [22] Schaffrin B. and Wieser A., 2008b, On weighted total leastsquares adjustment for linear regression, J. Geod., 82, 415-421. Google Scholar

  • [23] Shen Y.Z., Li B.F. and Chen Y., 2011, An iterative solution of weighted total least-squares adjustment, J. Geod., 85, 229-238. Web of ScienceGoogle Scholar

  • [24] Shi, Y., Xu, P.L., Liu, J.N. and Shi, C., 2015, Alternative formulae for parameter estimation in partial errors-in-variables models, J. Geod., 89, 13-16. Web of ScienceGoogle Scholar

  • [25] Sjöberg L.E., 1995, The best quadratic minimum bias nonnegative definite estimator for an additive two variance component model, Manuscr Geod, 20:139-144. Google Scholar

  • [26] Snow K., 2012, Topics in total least-squares adjustment within the errors-in-variables model: singular cofactor matrices and prior information, Ph.D Thesis, The Ohio state university, Columbus. Google Scholar

  • [27] Teunissen P.J.G. and Amiri-Simkooei A.R., 2008, Least-squares variance component estimation, J. Geod., 82, 2, 65-82. Web of ScienceGoogle Scholar

  • [28] Van Huffel S., 1997, Recent advances in total least squares techniques and errors-in-variable modeling, SIAM Proceeding Series. SIAM, Philadelphia. Google Scholar

  • [29] Van Huffel S. and Lemmerling P., 2002, Total least squares and errors-in-variables modeling: analysis, algorithms and applications, Kluwer Academic Publishers, Dordrecht. Google Scholar

  • [30] Van Huffel S. and Vandewalle J., 1991, The total-squares problem: computational aspects and analysis, SIAM, Philadelphia. Google Scholar

  • [31] Xu P.L., Liu, J.N. and Shi, C., 2012, Total least Squares adjustment in partial errors-in-variables models: algorithm and statistical analysis, J. Geod., 86, 661-675. Web of ScienceGoogle Scholar

  • [32] Yu Z.C., 1996, A universal formula of maximum likelihood estimation of variance-covariance components, J. Geod, 70, 233- 240. Google Scholar

  • [33] ZengW.X., Liu J.N., Yao Y.B., 2015, On Partial Errors-In-Variables Models with Inequality Constraints of Parameters and Variables, J. Geod., 89, 111-119. Web of ScienceGoogle Scholar

About the article

Received: 2016-08-19

Accepted: 2016-02-01

Published Online: 2016-12-16

Citation Information: Journal of Geodetic Science, Volume 6, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2016-0010.

Export Citation

© 2016 J. Zhao. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in