Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Research Article. A new gravity laboratory in Ny-Ålesund, Svalbard

Assessment of pillars and implications for geodynamical applications

K. Breili
  • Corresponding author
  • Geodetic Institute, Norwegian Mapping Authority, NO-3507 Hønefoss, Norway
  • Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), NO-1432, Ås, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Hougen / D. I. Lysaker / O. C. D. Omang / B. Tangen
Published Online: 2017-05-11 | DOI: https://doi.org/10.1515/jogs-2017-0003

Abstract

The Norwegian Mapping Authority (NMA) has recently established a new gravity laboratory in Ny-Ålesund at Svalbard, Norway. The laboratory consists of three independent pillars and is part of the geodetic core station that is presently under construction at Brandal, approximately 1.5 km north of NMA’s old station. In anticipation of future use of the new gravity laboratory, we present benchmark gravity values, gravity gradients, and final coordinates of all new pillars. Test measurements indicate a higher noise level at Brandal compared to the old station. The increased noise level is attributed to higher sensitivity to wind.We have also investigated possible consequences of moving to Brandal when it comes to the gravitational signal of present-day ice mass changes and ocean tide loading. Plausible models representing ice mass changes at the Svalbard archipelago indicate that the gravitational signal at Brandal may differ from that at the old site with a size detectable with modern gravimeters. Users of gravity data from Ny-Ålesund should, therefore, be cautious if future observations from the new observatory are used to extend the existing gravity record. Due to its lower elevation, Brandal is significantly less sensitive to gravitational ocean tide loading. In the future, Brandal will be the prime site for gravimetry in Ny-Ålesund. This ensures gravity measurements collocated with space geodetic techniques like VLBI, SLR, and GNSS.

Keywords: Glacial isostatic adjustment; gravimetry; loading; Ny-Ålesund

References

  • [1] K. Breili. Ocean tide loading at elevated coastal gravity stations. Kart og Plan, 69(3):151-164, 2009.Google Scholar

  • [2] K. Breili and B. R. Pettersen. Effects of surface snow cover on gravimetric observations. J. Geodyn., 48:16-22, 2009. http://dx.doi.org/10.1016/j.jog.2009.04.001.CrossrefGoogle Scholar

  • [3] V. Dehant, P. Defraigne, and J. M. Wahr. Tides for a convective Earth. J. Geophys. Res., 104(B1):1035-1058, 1999. doi:CrossrefGoogle Scholar

  • [4] A. D. Dziewonski and D. L. Anderson. Preliminary reference earth model. Phys. Earth Planet. In., 25(4):297-356, 1981.CrossrefGoogle Scholar

  • [5] R. Falk, J. Müller, N. Lux, H. Wilmes, and H. Wziontek. Precise Gravimetric Surveys with the Field Absolute Gravimeter A-10. In Geodesy for Planet Earth, volume 136 of International Association of Geodesy Symposia, pages 273-279, 2012. doi:CrossrefGoogle Scholar

  • [6] W. E Farrell. Deformation of the Earth by Surface Loads. Rev. Geophys., 10:761-797, 1972. doi:CrossrefGoogle Scholar

  • [7] E. J. Førland, R. Benestad, I. Hanssen-Bauer, J. E. Haugen, and T. E. Skaugen. Temperature and Precipitation Development at Svalbard 1900-2100. Advances in Meteorology, 2011, 2011. doi:CrossrefGoogle Scholar

  • [8] J. O. Hagen, E. Trond, J. Kohler, and K. Melvold. Geometry changes on Svalbard glaciers: mass-balance or dynamic response? Ann. Glaciol., 42(1):255-261, 2005. https://doi.org/10.3189/172756405781812763.Google Scholar

  • [9] J. Hinderer, D. Crossley, and R. J. Warburton. Gravimetric Methods - Superconducting Gravity Meters. In T. Herring and G. Schubert, editors, Geodesy, volume 3 of Treatise on Geophysics, pages 65-122. Elsevier, 2009. ISBN 978-0-444-53460-6.Google Scholar

  • [10] K. Isaksen, Ø. Nordli, E. J. Førland, E. Łupikasza, S. Eastwood, and T. Niedźwiedź. Recent warming on Spitsbergen - Influence of atmospheric circulation and sea ice cover. J. Geophys. Res.- atmos., 121:11913-11931, 2016. doi:CrossrefGoogle Scholar

  • [11] H. P. Kierulf, H. P. Plag, and J. Kohler. Surface deformation induced by present-day ice melting in Svalbard. Geophys. J. Int., 179:1-13, 2009. doi:CrossrefWeb of ScienceGoogle Scholar

  • [12] F. Lyard, F. Lefevre, T. Letellier, and O. Francis. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn., 56:394-451, 2006. doi:CrossrefGoogle Scholar

  • [13] K. Matsumoto, T. Takanezawa, and M. Ooe. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. J. Oceanogr., 56:567-581, 2000. doi:CrossrefGoogle Scholar

  • [14] A. Mémin, J. Hinderer, and Y. Rogister. Separation of the Geodetic Consequences of Past and Present Ice-Mass Change: Influence of Topography with Application to Svalbard (Norway). Pure Appl. Geophys, 169(8):1357-1372, 2012. doi:CrossrefGoogle Scholar

  • [15] A. Mémin, Y. Rogister, J. Hinderer,O. C.Omang, and B. Luck. Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data. Geophys. J. Int., 184:1119-1130, 2011. doi:CrossrefWeb of ScienceGoogle Scholar

  • [16] A. Mémin, G. Spada, J. P. Boy, Y. Rogister, and J. Hinderer. Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes. Geophys. J. Int., 2014. doi:CrossrefWeb of ScienceGoogle Scholar

  • [17] J. B. Merriam. Atmospheric pressure and gravity. Geophys. J. Int., 109(3):488-500, 1992. doi:CrossrefGoogle Scholar

  • [18] A-10 Portable Gravimeter User’s Manual, 2012. Lafayette, Colorado, USA.Google Scholar

  • [19] G. Moholdt, C. Nuth, J. O. Hagen, and J. Kohler. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114:2756-2767, 2010. doi:CrossrefGoogle Scholar

  • [20] D. Nagy, G. Papp, and J. Benedek. The gravitational potential and its derivatives for the prism. J. Geod., 74:552-560, 2000. doi:CrossrefGoogle Scholar

  • [21] T.MNiebauer, G. S Sasagawa, J. E. Faller, R. Hilt, and F. Klopping. A new generation of absolute gravimeters. Metrologia, 32:159-180, 1995. http://dx.doi.org/10.1088/0026-1394/32/3/004.CrossrefGoogle Scholar

  • [22] Ø. Nordli, R. Przybylak, A. E. J. Ogilvie, and K. Isaksen. Longterm temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012. Polar res., 33, 2014. http://dx.doi.org/10.3402/polar.v33.21349.CrossrefGoogle Scholar

  • [23] Norwegian Polar Institute. Map data Svalbard 1:100 000 (S100), 2014. https://data.npolar.no/dataset/645336c7-adfe-4d5a-978d-9426fe788ee3.Google Scholar

  • [24] Norwegian Polar Institute. Terrain model Svalbard (S0), 2014. https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea.Google Scholar

  • [25] O. C. D. Omang and H. P. Kierulf. Past and present-day ice mass variation on Svalbard revealed by superconducting gravimeter and GPS measurements. Geophys. Res. Lett., 38:L22304, 2011. doi:CrossrefWeb of ScienceGoogle Scholar

  • [26] V. Ophaug, K. Breili, C. Gerlach, J. G. Omholt Gjevestad, D. I. Lysaker, O. C. Dahl Omang, and B. R. Pettersen. Absolute gravity observations in Norway (1993-2014) for glacial isostatic adjustment studies: The influence of gravitational loading effects on secular gravity trends. J. Geodyn., 102, 2016. doi:CrossrefWeb of ScienceGoogle Scholar

  • [27] B. R. Pettersen. Ny-Ålesund geodetiske observatorium. Statens kartverks nye forskningsanlegg på Svalbard. Kart og Plan, 56(2):99-103, 1996.Google Scholar

  • [28] QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation, 2016. http://qgis.osgeo.org.Google Scholar

  • [29] E. Roland. Absolutt tyngdemåling i Fennoskandia og Svalbard, 1998. Internal project report, Geodetic Institute, Norwegian Mapping Authority.Google Scholar

  • [30] T. Sato, J. P. Boy, Y. Tamura, K. Matsumoto, K. Asari, H. P. Plag, and O. Francis. Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J. Geodyn., 41:234-241, 2006. http://dx.doi.org/10.1016/j.jog.2005.08.016.CrossrefGoogle Scholar

  • [31] T. Sato, J. Okuno, J. Hinderer, D. S.MacMillan, H. P. Plag, O. Francis, R. Falk, and Y. Fukuda. A geophysical interpretation of the secular displacement and gravity rates observed at Ny-Ålesund, Svalbard in the Arctic - effects of post-glacial rebound and present-day ice melting. Geophys. J. Int, 165:729-743, 2006. doi:CrossrefWeb of ScienceGoogle Scholar

  • [32] H. Steffen and P.Wu. Glacial isostatic adjustment in Fennoscandia - a review of data and modeling. J. Geodyn., 52(3-4):169-204, 2011. doi:CrossrefWeb of ScienceGoogle Scholar

  • [33] Y. Tamura. A Harmonic Development of the Tide-Generating Potential. Bull. Inf. Marées Terrestres, 99:6813-6855, 1987.Google Scholar

  • [34] L. Timmen, A. Engfeldt, and H. G. Scherneck. Observed secular gravity trend at Onsala station with the FG5 gravimeter from Hannover. J. Geod. Sci., 5(1), 2015. https://doi.org/10.1515/jogs-2015-0001.CrossrefGoogle Scholar

  • [35] M. Van Camp, O. de Viron, and J. P. Avouac. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements. Geophys. Res. Lett., 43(9):4313-4320, 2016. doi:CrossrefWeb of ScienceGoogle Scholar

  • [36] M. Van Camp and P. Vauterin. Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Computers & Geosciences, 31(5):631-640, 2005. doi:CrossrefGoogle Scholar

  • [37] B. L. Welch. The Generalization of Student’s Problem when Several Different Population Variances are Involved. Biometrika, 34(1/2):28-35, 1947. doi:CrossrefGoogle Scholar

About the article

Received: 2017-01-03

Accepted: 2017-03-08

Published Online: 2017-05-11

Published in Print: 2017-02-23


Citation Information: Journal of Geodetic Science, Volume 7, Issue 1, Pages 18–30, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2017-0003.

Export Citation

© by K. Breili. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in