Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

H. Bâki Iz
  • Corresponding author
  • Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. K. Shum
  • Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy & Geophysics, Chinese Academy of Sciences, Wuhan, Hubei 430077, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Zhang
  • Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Y. Kuo
Published Online: 2017-05-11 | DOI: https://doi.org/10.1515/jogs-2017-0007

Abstract

This study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.

Keywords: Glacial isostatic adjustment; Global Positioning System; Sea level rise; Tide gauge; Vertical crustal motion

References

  • Aldiss, D.T.; B. Helen; C. Barrie, T. Douglas, 2007, Absolute fixing of tide gauge benchmarks and land levels: measuring changes in land and sea levels around the coast of Great Britain and along the Thames Estuary and River Thames using GPS, absolute gravimetry, persistent scatterer interferometry and tide gauges. R&DTechnical Report FD2319/TR. London, Department for Environmental, Food and Rural Affairs, 236pp.Google Scholar

  • Bouin M.N., G. Wöppelmann, 2010, Land motion estimates from GPS at tide gauges: a geophysical evaluation, Geophys J Int., 180 (1): 193-209.Web of ScienceGoogle Scholar

  • Douglas B.C., 1992, Global sea level acceleration, J. Geophys. Res., 97, 12,699-12,706.Google Scholar

  • Guo, J. Y., Z.W. Huang, C. K. Shum, andW. van derWal, 2012, Comparisons among contemporary glacial isostatic adjustment models. J. Geodyn., 61, 129-137.Google Scholar

  • Holgate, S.J., A. Matthews, P.L. Woodworth, L.J. Rickards, M.E. Tamisiea, E. Bradshaw, P.R. Foden, K.M. Gordon, S. Jevrejeva, and J. Pugh, 2013, New Data Systems and Products at the Permanent Service for Mean Sea Level. Journal of Coastal Research: Volume 29, Issue 3: pp. 493 - 504.CrossrefGoogle Scholar

  • Huang Z., 2013, The Role of Glacial Isostatic Adjustment (GIA) Process on the Determination of Present-Day Sea Level Rise, OSU Report No. 504, vi+141 pp.Google Scholar

  • Huang, Z., J. Guo, C. K. Shum, J. Wan, J. Duan, H. S., Fok, and C. Kuo, 2013, On the Accuracy of Glacial Isostatic Adjustment Models for Geodetic Observations to Estimate Arctic Ocean Sea-Level Change, Terr. Atmos. Ocean. Sci., Vol. 24, No. 4, Part I, 471-490., doi:CrossrefGoogle Scholar

  • İz H.B., 2015, More Confounders at Global and Decadal Scales in Detecting Recent Sea Level Accelerations, Journal of Geodetic Science, Vol. 5, pp. 192-198.Google Scholar

  • İz H.B., 2014, Sub and Super Harmonics of the Lunar Nodal Tides and the Solar Radiative Forcing in Global Sea Level Changes, Journal of Geodetic Science, Vol. 4, pp. 150-165.Google Scholar

  • İz H.B., L. Berry, and M. Koch, 2012: Modeling regional sea level rise using local tide gauge data, Journal of Geodetic Science, Vol. 2, Issue 3, pp. 188-1999.Google Scholar

  • İz H.B. and C.K. Shum 2000: Mean Sea Level Variation in the South China Sea from Four Decades of Tidal Records in Hong Kong, Marine Geodesy, Vol. 23, No. 4, pp. 221-233.CrossrefGoogle Scholar

  • Larsen, C. F., K.A. Echelmeyer, J.T. Freymueller, and R.J. Motykaet, 2003, Tide gauge records of uplift along the northern Pacific-North American Plate boundary, 1937 - 2001, Journal of Geophysical Research, Vol. 108, NO. B4, 2216, 2003.Google Scholar

  • Neter J.M., Kutner H., Nachtsheim C.J., and Wasserman M., 1996, Applied linear statistical models, Richard D. Irwin, 1408.Google Scholar

  • NOAA, 2013, Estimating Vertical Land Motion from Long-Term Tide Gauge Records. Technical Report NOS CO-OPS 065.Google Scholar

  • Permanent Service for MSL 2011, Home page, http://www.pol.ac.uk/psmsl/, accessed on April 2011.Google Scholar

  • Peltier, W. R.. 1998, Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Reviews of Geophysics 36, no. 4, 603.CrossrefGoogle Scholar

  • Santamaría-Gómez, A., Gravelle, M., Collilieux, X., Guichard, M., Míguez, B. M., Tiphaneau, P., & Wöppelmann, G. (2012). Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global and Planetary Change, 98, 6-17.Google Scholar

  • Savage, J.C., and G. Plafker 1991, Tide Gage Measurements of Uplift Along the South Coast of Alaska, Journal of Geophysical Research, Vol. 96, No. B3, 4325-4335, 1991.CrossrefGoogle Scholar

  • Schöne, T., Schön, N., & Thaller, D. (2009). IGS tide gauge benchmark monitoring pilot project (TIGA): scientific benefits. Journal of Geodesy, 83(3-4), 249-261.Web of ScienceCrossrefGoogle Scholar

  • Schubert, G., D.L. Turcotte, and P. Olson, 2001, Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge.Google Scholar

  • Wöppelmann, G. 2017, SONEL Data Assembly Centre, http://www.sonel.org/spip.php?page=cgps#Google Scholar

About the article

Received: 2016-12-12

Accepted: 2017-03-29

Published Online: 2017-05-11

Published in Print: 2017-02-23


Citation Information: Journal of Geodetic Science, Volume 7, Issue 1, Pages 59–67, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2017-0007.

Export Citation

© by H. Bâki Iz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in