Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

N. Ivchenko
  • Corresponding author
  • School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044, Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Y. Yuan
  • School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Linden
  • School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-02 | DOI: https://doi.org/10.1515/jogs-2017-0011

Abstract

This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

Keywords : estimation; least squares problem; optimization

References

  • [1] Choi E., Yoon J., Lee B., Park S., Choi K., 2010, Onboard orbit determination using GPS observations based on the unscented Kalman filter, Adv. Space Res., 46, 1440-1450.Google Scholar

  • [2] Zehentner N., Mayer-Gürr T., 2016, Precise orbit determination based on raw GPS measurements, J Geod., 90, 275-286.Web of ScienceGoogle Scholar

  • [3] Vu A., Farrell J. A., Barth M., 2013, Centimeter-Accuracy Smoothed Vehicle Trajectory Estimation, IEEE Intell. Transp. Syst. Mag., 5, 121-135.Web of ScienceGoogle Scholar

  • [4] Borre K., Akos D. M., Bertelsen N., Rinder P., Jensen S. H., 2007, A Software-defined GPS and Galileo Receiver. Birkhäuser Boston.Google Scholar

  • [5] Zhang X., 2014, An Iterative Robust Regularization Method for GPS Positioning, Circuits Syst Signal Process, 33, 2895-2915.Web of ScienceGoogle Scholar

  • [6] Won D. H., Ahn J., Lee S., Lee J., Sung S., Park H., et al. 2012, Weighted DOP With Consideration on Elevation-Dependent Range Errors of GNSS Satellites, IEEE Trans. Instrum. Meas., 61, 3241-3250.Web of ScienceGoogle Scholar

  • [7] Li L., Zhong J., Zhao M., 2011, Doppler-Aided GNSS Position EstimationWith Weighted Least Squares, IEEE Trans. Veh. Technol., 60, 3615-3624.CrossrefGoogle Scholar

  • [8] Mosavi M. R., Rahemi N., 2015, Positioning performance analysis using RWLS algorithm based on variance estimation methods, Circuits Syst Signal Process, 42, 88-96.Google Scholar

  • [9] Reid W., Achtert P., Ivchenko N., Magnusson P., Kuremyr T., Shepenkov V., et al. 2013, Technical Note: A novel rocket-based in situ collection technique for mesospheric and stratospheric aerosol particles, Atmos. Meas. Tech., 6, 777-785.Web of ScienceGoogle Scholar

  • [10] Wi-Sys Communications Inc.31B Richardson Side Road Ottawa, ON K2K 0A1 Canada WS3914 Low Current GPS Antenna.Google Scholar

  • [11] MAX2769 Universal GPS Receiver. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600.Google Scholar

  • [12] M. Rothacher R. S., 2010, ANTEX: The Antenna Exchange Format. Forschungseinrichtung Satellitengeodäsie1st ed.Google Scholar

  • [13] Dow J. M., Neilan R. E., Rizos C., 2009, The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J Geod., 83, 191-198.Web of ScienceGoogle Scholar

  • [14] A guide to using international GNSS service (IGS) products. 615 Booth Street, Ottawa, Ontario K1A 0E9, Canada.Google Scholar

  • [15] Spofford P. R., The National Geodetic Survey Standard GPS Format SP3.Google Scholar

  • [16] Feng Y., Zhang Y., 2005, Efficient interpolations to GPS orbits for precise wide area applications, GPS Solut., 9, 273-282.CrossrefGoogle Scholar

  • [17] Ho H. W., Wong S. C., 2005, A Levenberg-Marquardt iterative solver for least-squares problems, Commun. Numer. Methods Eng., 21, 327-335.Google Scholar

  • [18] Jwo D. J., 2001, Optimisation and sensivity analysis of GPS receiver tracking loops in dynamics environments, IEEE Proc. Radar, Sonar and Navigation, 148.Google Scholar

  • [19] Choi K. R., Lightsey E. G., Total Electron Content (TEC) Estimation Using GPS Measurements Onboard TerraSAR-X, in Proceedings of the 2008 National Technical Meeting of The Institute of Navigation.Google Scholar

  • [20] Schaer S., Gurtner W., Feltens J., 1998, IONEX: The IONosphere Map EXchange Format Version 1, tech. rep.Astronomical Institute, University of Berne, Switzerland, ESA/ESOC, Darmstadt, Germany.Google Scholar

  • [21] Hofmann-Wellenhof B., Lichtenegger H., Wasle E., 2008, GNSS - Global Navigation Satellite Systems, GPS, GLONASS, Galileo, and more. Springer.Google Scholar

  • [22] Spilker J. J., Bradford Jr. P. A., Enge W. P. P., 1996, Introduction to Relativistic Effects on the Global Positioning System, Global Positioning System: Theory and Applications, 1, 623-697.Google Scholar

  • [23] Ashby N., 2003, Relativity in the Global Positioning System, Living Rev. Relat., 6, 5-42.Google Scholar

  • [24] Wu J., Wu S., Hajj G., Bertiguer W., Lichten S., 1993, Effects of Antenna Orientation on GPS Carrier Phase Measurements, Manuscripta Geodaetica, 18, 91-98.Google Scholar

  • [25] Goleman T. F., Li Y., 1992, On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds, tech. rep.Cornell Univeristy, Ithaca, New York, USA.Google Scholar

  • [26] Goleman T. F., Li Y., 1996, An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J Optimiz., 6, 418-445. 10.1137/0806023.Google Scholar

  • [27] García-Fernández M., Markgraf M., Montenbruck O., 2008, Spin rate estimation of sounding rockets using GPS wind-up, GPS Solut., 12, 155-161CrossrefGoogle Scholar

About the article

Published Online: 2017-09-02

Published in Print: 2017-08-28


Citation Information: Journal of Geodetic Science, Volume 7, Issue 1, Pages 94–104, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2017-0011.

Export Citation

© by N. Ivchenko. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in