Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

1 Issue per year

Open Access
See all formats and pricing
More options …

Performance of GPS sidereal filters during a satellite outage

C. Atkins
  • Corresponding author
  • Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. K. Ziebart
  • Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-07 | DOI: https://doi.org/10.1515/jogs-2017-0015


Sidereal filtering is the name of a technique used to reduce the effect of multipath interference on a GPS position time series associated with a static or quasi-static antenna. This article assesses the impact of a GPS satellite outage on the performance of a sidereal filter. Two different types of sidereal filter are tested: a position-domain sidereal filter (PDSF) and an observation-domain sidereal filter (ODSF). A satellite outage is simulated at two static receivers with contrasting antenna types and multipath environments. At both stations, the ODSF is more effective than a PDSF at removing multipath error over averaging intervals under around 200 seconds in length whether there is an outage or not. However, difference in the performance of the two types of sidereal filter was much more significant at the station more prone to multipath interference. The results are particularly relevant for applications where high-rate precise point positioning (PPP) is used for monitoring: If a PDSF is applied, then errors due to highfrequency multipath interference may still alias into the resulting position time series if a satellite outage occurs and possibly increasing the false alarm rate. In contrast, an ODSF is likely to perform better in such circumstances.

Keywords: Allan deviation; Carrier phase; Global Positioning System; High-rate; Multipath; Precise Point Positioning; Satellite outage; Sidereal filtering


  • Agnew D.C. and Larson K.M., 2007, Finding the repeat times of the GPS constellation, GPS Solut., 11, 71-76, doi:CrossrefWeb of ScienceGoogle Scholar

  • Allan D.W., 1966, Statistics of atomic frequency standards, Proc. IEEE 54:221-230, doi:CrossrefGoogle Scholar

  • Atkins C., 2016, Observation-domain sidereal filtering for high-rate GPS precise point positioning, University College London.Google Scholar

  • Atkins C. and Ziebart M., 2016, E_ectiveness of observation-domain sidereal filtering for GPS precise point positioning, GPS Solut., 20, 111-122, doi:CrossrefGoogle Scholar

  • Axelrad P., Larson K.M. and Jones B., 2005, Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors, Proceedings of ION GNSS 2005, Long Beach, CA, 2638-2648.Google Scholar

  • Bar-Sever Y.E., Kroger, P.M. and Borjesson, J.A., 1998, Estimating thehorizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res., 103(B3), 5019-5035.Google Scholar

  • Boehm J., Niell A., Tregoning P. and Schuh H., 2006, Global Mapping Function (GMF): a new empirical mapping function based on numerical weather data, Geophys. Res. Lett., 33, L07304, doi:CrossrefGoogle Scholar

  • Chen D., Ye S., Xia J., Liu Y. and Xia P., 2016, A geometry-free and ionosphere-free multipath mitigation method for BDS threefrequency ambiguity resolution, J. Geodesy, 90, 703-714, doi:CrossrefGoogle Scholar

  • Collins P., Lahaye F., Heroux P. and Bisnath S., 2008, Precise point positioning with ambiguity resolution using the decoupled clock model, Proceedings of ION GNSS 2008, Savannah, GA, 1315-1322.Google Scholar

  • Dach R., Hugentobler U., Fridez P. and Meindl M., 2007, Bernese GPS software version 5.0. Usermanual, Astronomical Institute, University of Bern.Google Scholar

  • Fuhrmann T., Luo X., Knöpfler A. and Mayer M., 2014, Generating statistically robust multipath stacking maps using congruent cells, GPS Solut., 19, 83-92, doi:CrossrefGoogle Scholar

  • Ferre-Pikal E. and Walls F., 2005, Frequency standards, characterization, Encycl. RF Microw. Eng., John Wiley and Sons, Inc., Hoboken, N.J., 767-775.Google Scholar

  • Ge M., Gendt G., Rothacher M., Shi C. and Liu J., 2008, Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J. Geod., 82, 389-399, doi:CrossrefWeb of ScienceGoogle Scholar

  • Larson K.M., Bilich A.L. and Axelrad P., 2007, Improving the precision of high-rate GPS, J. Geophys. Res. Sol. Ea., 112, B05422, doi:CrossrefGoogle Scholar

  • Laurichesse D., Mercier F., Berthias J.-P. and Broca P., 2009, Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination, Navigation, 56, 135-143, doi:CrossrefGoogle Scholar

  • Weinbach U., 2013, Feasibility and impact of receiver clock modeling in precise GPS data analysis, Leibniz University of Hannover.Google Scholar

  • Ye S., Chen D., Liu Y., Jiang P., Tang W. and Xia P., 2015, Carrier phase multipath mitigation for BeiDou navigation satellite system, GPS Solut., 19, 545-557, doi:CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-04-27

Accepted: 2017-11-01

Published Online: 2017-12-07

Published in Print: 2017-11-27

Citation Information: Journal of Geodetic Science, Volume 7, Issue 1, Pages 141–150, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2017-0015.

Export Citation

© by C. Atkins. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in