Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Why and how to predict sea level changes at a tide gauge station with prediction intervals

H. Bâki Iz
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/jogs-2018-0012

Abstract

Predicting sea level rise is essential for current climate discussions. Empirical models put in use to monitor and analyze sea level variations observed at globally distributed tide gauge stations during the last decade can provide reliable predictions with high resolution. Meanwhile, prediction intervals, an alternative to confidence intervals, are to be recognized and deployed in sea level studies. Predictions together with their prediction intervals, as demonstrated in this study, can quantify the uncertainty of a single future observation from a population, instead of the uncertainty of a conceivable average sea level namely a confidence interval, and it is thereby, better suited for coastal risk assessment to guide policy development for mitigation and adaptation responses.

Keywords: Prediction; Prediction intervals; Best linear unbiased prediction; Confidence intervals; Projection; Tide gauges; Climate change; Risk assessment

References

  • Bibby, J. and H. Toutenburg, 1977, Prediction and improved estimation in linear models, John Wiley and Sons, New York.Google Scholar

  • Bindoff N.L., J.Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley and A. Unnikrishnan (2007) Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar

  • Bray, D., H. Vomn Storch, 2009, Prediction or projection? The nomenclature of Climate Science, Science Communication Vol. 30 pp: 534-543.Web of ScienceCrossrefGoogle Scholar

  • Gabriele G., J. Feichter, Eds., 2011, Climate change and policy: The calculability of climate change and the challenge of uncertainty, Springer, 241 pgs.Google Scholar

  • Goldberger A. S., 1962, Best linear unbiased prediction in the generalized linear regression model, Journal of the American Statistical Association, Vol. 57, No. 298, pp.369-375.Google Scholar

  • IPCC, 2013: Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar

  • İz, H.B., 1992, Conditions for improved prediction when erroneous prior information is used about the expected values of stochastic parameters, Manuscripta Geodaetica, Vol.17, pp. 124-134.Google Scholar

  • İz H.B. and Y. Chen, 1999, VLBI Rates with First Order Autoregressive Disturbances, J. of Geodynamics, Vol. 28, No. 2-3, pp. 131-145.CrossrefGoogle Scholar

  • İz H.B., 2014, Sub and super harmonics of the lunar nodal tides and the solar radiative forcing in global sea level changes, J. of Geod. Sci., Vol. 4, pp. 150-165.Google Scholar

  • İz H.B., 2015, More confounders at global and decadal scales in detecting recent sea level accelerations, J. of Geod. Sci., Vol., pp. 192-198.Web of ScienceGoogle Scholar

  • İz H.B., 2016, The effect of warming oceans at a tide gauge station, J. of Geod. Sci., Vol. 6, pp. 69-79.Web of ScienceGoogle Scholar

  • İz H.B., 2017, The effect of regional sea level atmospheric pressure to sea level variations at globally distributed tide gauge stations with long records, J. Geod. Sci. Vol. 8, pp. 55-71.Web of ScienceGoogle Scholar

  • İz H.B., 2018: Is the global sea surface temperature rise accelerating? Geodesy and Geodynamics, 1-7. https://doi.org/10.1016/j.geog.2018.04.002.CrossrefGoogle Scholar

  • Keeling, C. D., and Whorf T. P., 1997, Possible forcing of global temperature by oceanic tides. Proc. Natl. Acad. Sci., 94, 8321-8328.CrossrefGoogle Scholar

  • Mastrandrea, M.D., C.B. Field, T.F. Stocker, O. Edenhofer, K.L. Ebi, D.J. Frame, H. Held, E. Kriegler, K.J. Mach, P.R. Matschoss, G.-K. Plattner, G.W. Yohe, and F.W. Zwiers, 2010: Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC). Available at http://www.ipcc.ch.Google Scholar

  • Munk,W., Dzieciuch M., Jayne S., 2002, Millennial climate variability: Is there a tidal connection? J. Climate, 15, 370-385.CrossrefGoogle Scholar

  • Nerem R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters and G. T. Mitchum, 2018, Climate-change-driven accelerated sealevel rise detected in the altimeter era. PNAS, 1-4.Google Scholar

  • Permanent Service for Mean Sea Level, 2016, Tide Gauge Data, Retrieved February 2016 from http://www.psmsl.org/data/obtaining/.Google Scholar

  • Toutenburg, H., 1982, Prior information in linear models, John Wile and Sons, New York.Google Scholar

About the article

Received: 2018-03-03

Accepted: 2018-11-16

Published Online: 2018-12-31

Published in Print: 2018-12-01


Citation Information: Journal of Geodetic Science, Volume 8, Issue 1, Pages 121–129, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2018-0012.

Export Citation

© by H. Bâki Iz, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in