Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Sea level accelerations at globally distributed tide gauge stations during the satellite altimetry era

H. Bâki Iz
  • Corresponding author
  • Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy & Geophysics, Chinese Academy of Sciences, Wuhan, Hubei430077, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. K. Shum
  • Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy & Geophysics, Chinese Academy of Sciences, Wuhan, Hubei430077, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Y. Kuo
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/jogs-2018-0013


This observational study reports that several globally distributed tide gauge stations exhibit a propensity of statistically significant sea level accelerations during the satellite altimetry era. However, the magnitudes of the estimated tide gauge accelerations during this period are systematically and noticeably smaller than the global mean sea level acceleration reported by recent analyses of satellite altimetry. The differences are likely to be caused by the interannual, decadal and interdecadal sea level variations, which are modeled using a broken trend model with overlapping harmonics in the analyses of tide gauge data but omitted in the analysis of satellite altimetry.

Keywords: Climate change; Satellite altimetry; Sea level acceleration; Tide gauges. Broken trend model


  • Church, J. A., and N. J. White, 2006, A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33, L01602.Google Scholar

  • Davis, J. L., and N. T. Vinogradova (2017), Causes of accelerating sea level on the East Coast of North America, Geophys. Res. Lett., 44, 5133-5141.CrossrefWeb of ScienceGoogle Scholar

  • Dieng, H. B., A. Cazenave, B. Meyssignac, and M. Ablain (2017), New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44, 3744-3751.CrossrefWeb of ScienceGoogle Scholar

  • Douglas, B.C., 1992, Global sea level acceleration, J. Geophys. Res., 97, 12,699-12,706.Google Scholar

  • Hildreth, G. and Lu T., 1960, Demand relations with autocorrelated disturbances, Technical Bulletin 276, Michigan State University Agricultural Experiment.Google Scholar

  • Hogarth, P., 2014, Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets, J. Geophys. Res. Oceans, 119,7645-7659.Web of ScienceGoogle Scholar

  • Holgate, S.J., 2007, On the decadal rates of sea level change during the twentieth century, Geophys. Res. Lett. 34, L01602.Web of ScienceCrossrefGoogle Scholar

  • Holgate S.J., A. Matthews, P. L. Woodworth, L. J. Rickards, M. E. Tamisiea, E. Bradshaw, P. R. Foden, K. M. Gordon, S. Jevrejeva, and J. Pugh, 2013, New Data Systems and Products at the Permanent Service for Mean Sea Level. Journal of Coastal Research, Volume 29, Issue 3: pp. 493 - 504.Google Scholar

  • Houston J.R. and R.G. Dean, 2011, Sea-Level Acceleration Based on U.S. Tide Gauges and Extensions of Previous Global-Gauge Analyses, Journal of Coastal Research, 27, 409 - 417.Web of ScienceCrossrefGoogle Scholar

  • İz H.B., 2018a, The effect of regional sea level atmospheric pressure to sea level variations at globally distributed tide gauge stations with long records, J. Geod. Sci. Vol. 8, pp. 55-71.Web of ScienceGoogle Scholar

  • İz H.B., 2018b, Is the Global Sea Temperature Rise Accelerating? Geodesy and Geodynamics, preprint: DOI 10.1016/j.geog.2018.04.002.CrossrefGoogle Scholar

  • İz H.B., 2017, Acceleration of the Global Coastal Sea Level Rise During the 20th Century Re-evaluated, J. Geod. Sci., Vol. 7, pp. 51-58.Web of ScienceGoogle Scholar

  • İz H.B., 2016a, Thermosteric contribution of warming oceans to the global sea level variations, J. Geod. Sci., Vol. 6, pp. 130-138.Web of ScienceGoogle Scholar

  • İz H.B., 2016b, The effect of warming oceans at a tide gauge station, J. of Geod. Sci., Vol. 6, pp. 69-79.Web of ScienceGoogle Scholar

  • İz H.B., 2015, More confounders at global and decadal scales in detecting recent sea level accelerations, J. of Geod. Sci, 5, 192-198.Web of ScienceGoogle Scholar

  • İz H.B., 2014, Sub and super harmonics of the lunar nodal tides and the solar radiative forcing in global sea level changes, J. of Geod. Sci., 4, 150-165.Google Scholar

  • İz H.B., X.L. Ding, and C.K. Shum, 2013: Global Sea Level Trends in the Presence of Variable Sea Level Velocities, and Variable Accelerations, J. Geod. Sci., Vol. 3, Issue 2, pp. 127-135Google Scholar

  • İz H.B., L. Berry, and M. Koch, 2012: Modeling regional sea level rise using local tide gauge data, J. of Geod. Sci., Vol. 2, Issue 3, pp. 188-1999.Google Scholar

  • İz H.B., 2006: How do unmodeled systematic MSL variations affect long term sea level trend estimates from tide gauge data? J. of Geodesy, Vol. 80, No .1, pp. 40-46.Google Scholar

  • Jevrejeva, S., J.C. Moore, A. Grinsted, A.P. Matthews, and G. Spada, 2014, Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11-22.Web of ScienceGoogle Scholar

  • Kopp, R. E. (2013), Does the mid-Atlantic United States sea-level acceleration hot spot reflect ocean dynamic variability? Geophys. Res. Lett., 40, 3981-3985.CrossrefWeb of ScienceGoogle Scholar

  • Merrifield, M. A., S. T. Merrifield, and G. T. Mitchum, 2009, An anomalous recent acceleration of global sea level rise, Journal of Climate, 22(21), 5772-5781.CrossrefWeb of ScienceGoogle Scholar

  • Nerem R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters and G. T. Mitchum, 2018, Climate-change-driven accelerated sealevel rise detected in the altimeter era. PNAS, 1-4.Google Scholar

  • Neter J.M., Kutner H., Nachtsheim C. J, and Wasserman M., 1996, Applied linear statistical models, Richard D. Irwin, 1408.Google Scholar

  • Permanent Service for Mean Sea Level (PSMSL), 2016, Tide Gauge Data, Retrieved 24 Oct 2016 from http://www.psmsl.org/data/obtaining/.Google Scholar

  • Pugh, D.T., 1996, Tides, surges and mean sea-level, Chichester, UK, John Wiley & Sons Ltd, 486pp.Google Scholar

  • Reinhart A, 2015, Statistics Done Wrong: The Woefully Complete Guide, No Starch Press, pgs 152.Google Scholar

  • Watson P.J., 2016a, A new perspective on global mean sea level (GMSL) acceleration. Geophysical Research Letters 43:12, 6478-6484.CrossrefWeb of ScienceGoogle Scholar

  • Watson P.J., 2016b, Acceleration in U.S.mean sea level? A new insight using improved tools. J. of Coastal Research: Volume 32, Issue 6: pp. 1247 - 1261.Google Scholar

  • Woodworth P.L., N. J. White, S. Jevrejeva, S. J. Holgate, J. A. Church and W. R. Gehrels, 2009, Evidence for the accelerations of sea level on multi-decade and century timescales, Int J Climatol., 29(6), 777-789.Web of ScienceCrossrefGoogle Scholar

  • Woodworth, P. L., 1990, A search for accelerations in records of European mean sea level, Int. J. Climatol., 10, 129- 143.Google Scholar

  • Yi, S., W. Sun, K. Heki, and A. Qian, 2015, An increase in the rate of global mean sea level rise since 2010, Geophys. Res. Lett., 42, 1-9.Web of ScienceGoogle Scholar

About the article

Received: 2018-06-17

Accepted: 2018-11-09

Published Online: 2018-12-31

Published in Print: 2018-12-01

Citation Information: Journal of Geodetic Science, Volume 8, Issue 1, Pages 130–135, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2018-0013.

Export Citation

© by H. Bâki Iz, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in