Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Evaluation of Gravity Data Derived from Global Gravity Field Models Using Terrestrial Gravity Data in Enugu State, Nigeria

O.I. Apeh / E.C. Moka / V.N. Uzodinma
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/jogs-2018-0015


Spherical harmonic expansion is a commonly applied mathematical representation of the earth’s gravity field. This representation is implied by the potential coeffcients determined by using elements/parameters of the field observed on the surface of the earth and/or in space outside the earth in the spherical harmonic expansion of the field. International Centre for Gravity Earth Models (ICGEM) publishes, from time to time, Global Gravity Field Models (GGMs) that have been developed. These GGMs need evaluation with terrestrial data of different locations to ascertain their accuracy for application in those locations. In this study, Bouguer gravity anomalies derived from a total of eleven (11) recent GGMs, using sixty sample points, were evaluated by means of Root-Mean-Square difference and correlation coeficient. The Root-Mean-Square differences of the computed Bouguer anomalies from ICGEMwebsite compared to their positionally corresponding terrestrial Bouguer anomalies range from 9.530mgal to 37.113mgal. Additionally, the correlation coe_cients of the structure of the signal of the terrestrial and GGM-derived Bouguer anomalies range from 0.480 to 0.879. It was observed that GECO derived Bouguer gravity anomalies have the best signal structure relationship with the terrestrial data than the other ten GGMs. We also discovered that EIGEN-6C4 and GECO derived Bouguer anomalies have enormous potential to be used as supplements to the terrestrial Bouguer anomalies for Enugu State, Nigeria.

Keywords: Bouguer Anomalies; Global Gravity field Models; International Centre for Gravity Earth Model


  • Akyilmaz O., Ustun A., Aydin C., Arslan N., Doganalp S., Guney C., Mercan H., Uygur S.O., Uz M. and Yagci O., 2016a, ITU_GGC16 The combined global gravity field model including GRACE & GOCE data up to degree and order 280. http://doi.org/10.5880/icgem.2016.005CrossrefGoogle Scholar

  • Akyilmaz O., Ustun A., Aydin C., Arslan N.,Doganalp S., Guney C., Mercan H., Uygur S.O., Uz M. and Yagci O., 2016b, ITU_GRACE16 The global gravity _eld model including GRACE data up to degree and order 180 of ITU and other collaborating institutions. http://doi.org/10.5880/icgem.2016.006CrossrefGoogle Scholar

  • Barthelmes F., 2013, De_nition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM), Scientific Technical Report STR09/02, Revised Edition, doi:CrossrefGoogle Scholar

  • Barthelmes F. and Köhler W., 2016, International Centre for Global Earth Models (ICGEM), in: Drewes, H., Kuglitsch, F., Adám, J. et al., The Geodesists Handbook 2016, J Geod., 90, 10, 907-1205. doi:CrossrefGoogle Scholar

  • Bettadpur S., Ries J., Eanes R., Nagel P., Pie N., Poole S., Richter T. and Save H., 2015, Evaluation of the GGM05 Mean Earth Gravity models, Geo. Res. Abs., 17, EGU2015-4153.Google Scholar

  • Fecher T., Pail R., Gruber T. and the GOCO Project Team., 2016, The Combined Gravity Model GOCO05c. http://doi.org/10.5880/ icgem.2016.003CrossrefGoogle Scholar

  • Förste C. and Bruinsma S.L., 2016, EIGEN-6S4: A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. http://doi.org/10.5880/icgem.2016.008CrossrefGoogle Scholar

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J. M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2015, EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://dx.doi.org/10.5880/icgem.2015.1CrossrefGoogle Scholar

  • Gatti A., Reguzzoni M., Migliaccio F. and Sanso F., 2014, Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude. [GOCE User Workshop]. ParisGoogle Scholar

  • Gilardoni M., Reguzzoni M. and Sampietro D., 2015, GECO: a global gravity model by locally combining GOCE data and EGM2008, Stu. Geo. Geod., doi:CrossrefGoogle Scholar

  • Huang J. and Véronneau M., 2009, Evaluation of the GRACE-based global gravity models in Canada, N Bull., 4, 3-17.Google Scholar

  • Mayer-Gurr T., Pail R., Gruber T., Fecher T., Rexer M., Schuh W.D., Kushe J., Brockman J. M., Rieser D., Zehentner N., Kvas A., Klinger B., Baur O., Hock E., Krauss S. and Jaggi, A., 2015, The combined satellite gravity field model GOCO05S. Vienna, Australia.Google Scholar

  • Morelli C., Gantar C., McConnell R. K., Szabo B., and Uotila U., 1972, The international gravity standardization net 1971 (IGSN 71), Osservatorio Geo_sico Sperimentale Trieste (Italy) .Google Scholar

  • Odera P. A., 2016, Assessment of EGM2008 using GPS/leveling and free-air gravity anomalies over Nairobi County and its environs, South African J Geo., 51, 17-30. Doi: http://dx.doi.org/10.4314/sajg.v5i1.2CrossrefGoogle Scholar

  • Osazuwa I.B.,1992a, The Nigerian Standard Calibration Line, Survey Review, 31, 245, 397-408.Google Scholar

  • Osazuwa I.B.,1985, The Establishment of a Primary Gravity Network for Nigeria, Ph.D. Thesis, Ahmadu Bello University, Zaria, Nigeria.Google Scholar

  • Ries J., Bettadpur S., Eanes R., Kang Z., Ko, U., McCullough C., Nagel P., Pie, N., Poole S., Richter T., Save H. and Tapley B., 2016, TheCombined Gravity Model GGM05C. http://dx.doi.org/10. 5880/icgem.2016.002CrossrefGoogle Scholar

  • Saari T. and Bilker-Koivula M., 2015, Evaluation ofGOCE-based Global Geoid Models in Finnish Territory, In EGU General Assembly Conference Abstracts, 17, 4165. Šprlák M., Gerlach C., Omang O. and Pettersen B., 2011, Comparison of GOCE derived satellite global gravity modelswith EGM2008, theGoogle Scholar

  • OCTAS geoid and terrestrial gravity data: case study for Norway, [Proceedings of the 4th international GOCE user workshop], Munich.Google Scholar

  • Wenzel H. G., 2005, Global models of the gravity field of high and ultra-high resolution, [International School for the Determination and Use of the Geoid], Budapest, Hungary.Google Scholar

  • Yılmaz I., Yılmaz M. and Turgut B., 2010, Evaluation of recent global geopotential models based on GPS/levelling data over Afyonkarahisar (Turkey), Sci. Res. and Essays, 5, 5, 484-493.Google Scholar

  • Zhou H., Luo Z., Zhou Z., Zhong B. and Hsu H., 2016, A new GRACE-only static gravity _eld model, HUST-Grace2016s. http://doi.org/10.5880/ICGEM.2016.010CrossrefGoogle Scholar

About the article

Received: 2018-02-24

Accepted: 2018-11-26

Published Online: 2018-12-31

Published in Print: 2018-12-01

Citation Information: Journal of Geodetic Science, Volume 8, Issue 1, Pages 145–153, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2018-0015.

Export Citation

© by O.I. Apeh, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Salissou Ibrahim Yahaya and Driss El Azzab
Geodesy and cartography, 2019, Volume 45, Number 3, Page 116

Comments (0)

Please log in or register to comment.
Log in