Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Optimal biased Kriging: Homeogram tapering and applications to geoid undulations in Korea

B. Schaffrin
  • School of Earth Sciences, Geodetic Science Division, The Ohio State University, Columbus, OH 43210, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.-S. Bae / Y. Felus
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/jogs-2018-0016

Abstract

This article studies the Optimal Biased Kriging (OBK) approach which is an alternative geostatistical method that gives up the unbiasedness condition of Ordinary Kriging (OK) to gain an improved Mean Squared Prediction Error (MSPE). The system of equations for the optimal linear biased Kriging predictor is derived and itsMSPE is compared with that of Ordinary Kriging. A major impediment in implementing this system of equations and performing Kriging interpolation with massive datasets is the inversion of the spatial coherency matrix. This problem is investigated and a novel method, called “homeogram tapering”, which exploits spatial sorting techniques to create sparse matrices for efficient matrix inversion, is described. Finally, as an application, results from experiments performed on a geoid undulation dataset from Korea are presented. A precise geoid is usually the indispensable basis for meaningful hydrological studies over wide areas. These experiments use the theory presented here along with a relatively new spatial coherency measure, called the homeogram, also known as the non-centered covariance function.

Keywords: geoid undulations; homeogram; homeogram tapering; spatial data sorting; spatial statistics

References

  • Abel, J.D., Mark, M.D., 1990. A comparative analysis of some twodimensional orderings. International Journal of Geographical Information Systems 4 (1), 21-31.CrossrefGoogle Scholar

  • Bae, T.S., 2016. Estimation of spatial coherency functions for Kriging of spatial data (in Korean). Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 34 (1), 91-98.Google Scholar

  • Barry, P.R., Pace, R.K., 1997. Kriging with large data sets using sparse matrix techniques. Communications in Statistics: Simulation and Computation 26 (2), 619-629.CrossrefGoogle Scholar

  • Cressie, N.A.C., 1993. Statistics for Spatial Data, second ed. Wiley, New York.Google Scholar

  • Davis, J.G., Morris, D.M., 1997. Six factors which affect the condition number of matrices associated with Kriging, Mathematical Geology 29 (5), 669-683.CrossrefGoogle Scholar

  • Felus, Y., 2001. New methods for spatial statistics in geographic information systems. PhD dissertation, Dept. of Civil & Environ. Engineering and Geodetic Sci., The Ohio State University, Columbus, Ohio, 176p.Google Scholar

  • Furrer, R., Genton, M.G., Nychka, D., 2006. Covariance tapering for interpolation of large spatial datasets, Journal of Computational and Graphical Statistics 15 (3), 502-523.CrossrefGoogle Scholar

  • Golub, H.G., van Loan, F.C., 1996. Matrix Computations, third ed. The Johns Hopkins University Press, Baltimore, MD.Google Scholar

  • Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.Google Scholar

  • Gotway, C.A., Cressie, N.A.C., 1993. Improved multivariate prediction under a general linear model. Journal of Multivariate Analysis 45 (1), 56-72.CrossrefGoogle Scholar

  • Gundlich, B., Koch, K.R., Kusche, J., 2003. Gibbs sampler for computing and propagating large covariance matrices. J. Geodesy 77 (9), 514-528.Google Scholar

  • Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1), 55-67.CrossrefGoogle Scholar

  • Jeannée, N., de Fouquet, C., 2000. Characterization of soil pollutions from former coal processing sites. In: Kleingeld, W.J., Krige, J.D. (Eds.), Geostatistics Congress 2000: Vol. 2. Cape Town, South Africa, pp. 526-537.Google Scholar

  • Journel, A.G., 1988. New distance measures: The route toward truly non-Gaussian geostatistics. Mathematical Geology 20 (4), 459-475.CrossrefGoogle Scholar

  • Li, B., 1996. Implementing spatial statistics on parallel computers. In: Arlinghaus, S.L., Griffith, D.A. (Eds.), Practical Handbook of Spatial Statistics. CRC Press, Boca Raton/FL, USA, pp. 107-149.Google Scholar

  • Meurant, G., 1999. Computer Solution of Large Linear Systems. Elsevier, Amsterdam, The Netherlands.Google Scholar

  • Montgomery, D.C., Friedman, D.J., 1993. Prediction using regression models with multicollinear predictor variables. IIE Transactions 25 (3), 73-85.CrossrefGoogle Scholar

  • Ozanne, M., Schneider, G., White, S., Yin, M., Craigmile, P., Herbei, R., Notz, W., 2014. A covariance tapering literature review. The Ohio State University, Columbus/OH, USA, 38p.Google Scholar

  • Pace, R.K., Barry, P.R., 1997. Quick computation of spatial autoregressive estimators. Geographical Analysis 29 (3), 232-247.Google Scholar

  • Sang, H., Huang, J.Z., 2012. A full-scale approximation of covariance functions for large spatial data sets. J. Roy. Statist. Soc. B-74 (1), 111-132.Google Scholar

  • Sang, H., Jun, M., Huang, J.Z., 2011. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors. Ann. Appl. Statist. 5 (4), 2519-2548.CrossrefGoogle Scholar

  • Schaffrin, B., 1985. The geodetic datumwith stochastic prior information (in German). Publication of the German Geodetic Commission C-313, Munich, Germany.Google Scholar

  • Schaffrin, B., 1993. Biased Kriging on the sphere? In: Soares, A. (Ed.), Geostatistics Troia 92, Vol. I. Kluwer, Dordrecht, The Netherlands, pp. 121-131.Google Scholar

  • Schaffrin, B., 2000a. Minimummean square error adjustment, Part 1: The empirical BLE and the repro-BLE for direct observations. Journal of the Geodetic Society of Japan 46 (1), 21-30.Google Scholar

  • Schaffrin, B., 2000b. On the reliability of data obtained by Kriging. In: Jan Beek, K., Molenaar, M. (Eds.), International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B4. Amsterdam, The Netherlands, pp. 893-900.Google Scholar

  • Schaffrin, B., 2001. Equivalent systems for various forms of Kriging, including least-squares collocation. Zeitschrift für Vermessungswesen 126 (2), 87-93.Google Scholar

  • Schaffrin, B., 2008. Minimum mean squared error (MSE) adjustment and the optimal Tykhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE). J. Geodesy 82 (2), 113-121.CrossrefWeb of ScienceGoogle Scholar

  • Skiena, S.S., 1997. The Algorithm Design Manual. Springer-Verlag, New York.Google Scholar

  • Vetter, P., Schmid, W., Schwarze, R., 2014. Efficient approximation of the spatial covariance function for large data sets - Analysis of atmospheric CO2 concentrations. J. Environ. Statist. 6 (3), 1-36.Google Scholar

About the article

Received: 2018-04-08

Accepted: 2018-11-27

Published Online: 2018-12-31

Published in Print: 2018-12-01


Citation Information: Journal of Geodetic Science, Volume 8, Issue 1, Pages 154–161, ISSN (Online) 2081-9943, DOI: https://doi.org/10.1515/jogs-2018-0016.

Export Citation

© by B. Schaffrin, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in