Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year


IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
Online
ISSN
0042-790X
See all formats and pricing
More options …
Volume 60, Issue 2 (Jun 2012)

Issues

Hillslope Runoff Generation - Comparing Different Modeling Approaches

Helena Pavelková
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Dohnal
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Vogel
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-14 | DOI: https://doi.org/10.2478/v10098-012-0007-2

Hillslope Runoff Generation - Comparing Different Modeling Approaches

This study focuses on modeling hydrological responses of shallow hillslope soil in a headwater catchment. The research is conducted using data from the experimental site Uhlířská in Jizera Mountains, Czech Republic. To compare different approaches of runoff generation modeling, three models were used: (1) one-dimensional variably saturated flow model S1D, based on the dual-continuum formulation of Richards' equation; (2) zero-dimensional nonlinear morphological element model GEOTRANSF; and (3) semi-distributed model utilizing the topographic index similarity assumption - TOPMODEL. Hillslope runoff hydrographs and soil water storage variations predicted by the simplified catchment scale models (GEOTRANSF and TOPMODEL) were compared with the respective responses generated by the more physically based local scale model S1D. Both models, GEOTRANSF and TOPMODEL, were found to predict general trends of hydrographs quite satisfactorily; however their ability to correctly predict soil water storages and inter-compartment fluxes was limited.

Tvorba Odtoku ze Svahu - Porovnání Rozdílných Modelových Přístupů

Studie je zaměřena na modelování hydrologické reakce mělké svahové půdy v pramenné části povodí Nisy, k výzkumu byla použita data z experimentálního povodí Uhlířská. Porovnání různých konceptuálních představ modelování odtoku bylo uskutečněno pro: (1) jednorozměrný model proměnlivě nasyceného proudění S1D; (2) model založený na bezrozměrném nelineárním morfologickém prvku - GEOTRANSF a (3) semi-distribuovaný model využívající principu podobnosti na základě topografického indexu - TOPMODEL. Hydrogramy odtoku ze svahu a změny zásob vody v půdě vypočtené zjednodušenými modely GEOTRANSF a TOPMODEL byly porovnány s odpovídajícími odezvami fyzikálně založeného modelu S1D. Oba modely, GEOTRANSF i TOPMODEL, byly poměrně úspěšné v předpovědi základních trendů hydrogramů odtoku, jejich schopnost správně předpovídat zásoby vody v půdě a toky mezi nimi však byla omezená.

Keywords: Rainfall-Runoff Modeling; Hillslope Discharge; Soil Water Storage; Transmisivity; Topographic Index; Richards' Equation; Preferential Flow

Keywords: srážko-odtokové modelování; odtok ze svahu; zásoba vody v půdě; transmisivita; topografický index; Richardsova rovnice; preferenční proudění

  • AMBROISE B., BEVEN K. J., FREER J., 1996: Toward a generalisation of the TOPMODEL concepts: Topographic indices of hydrological similarity. Water Resour. Res., 32, p. 2135-2145.Google Scholar

  • BEVEN K. J., 1986: Hillslope runoff processes and flood frequency characteristics, in Hillslope Processes, edited by A. D. Abrahams, pp. 187-202, Allen and Unwin, Winchester, Mass.Google Scholar

  • BEVEN K. J., 2001: Rainfall-Runoff Modelling. The Primer, John Wiley, New York.Google Scholar

  • BLAŽKOVÁ Š., BEVEN K. J., 1997: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J. Hydrol., 195, 256-278.Google Scholar

  • BLAŽKOVÁ Š., BEVEN K. J., TACHECÍ P., KULASOVÁ A., 2002a: Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL? Water Resour. Res., 38, Article No. 1257.Google Scholar

  • BLAŽKOVÁ Š., BEVEN K. J., KULASOVÁ A., 2002b: On constraining TOPMODEL hydrograph simulations using partial saturated area information. Hydrol. Process., 16, 441-458.Google Scholar

  • CÍSLEROVÁ M., ŠANDA M., BLAŽKOVÁ Š., MAZÁČ O., GRÜNWALD A., ZEITHAMMEROVÁ J., TACHECÍ P., 1997: Ecological aspects of the water resources protection: Transport processes in a watershed affected by abrupt changes of runoff conditions (Jizera Mountains). (In Czech.) Res. Rep. VaV/510/3/96-DÚ 01. Ministry of Environ., Czech Republic, Prague.Google Scholar

  • CORDANO E., RIGON R., 2008: A perturbative view on the subsurface water pressure response at hillslope scale, Water Resour. Res., 44, W05407.Web of ScienceGoogle Scholar

  • DOHNAL M., DUŠEK J., VOGEL T., 2006: The impact of the retention curve hysteresis on prediction of soil water dynamics. J. Hydrol. Hydromech., 54, 258-268.Google Scholar

  • FAN Y., BRAS R., 1998: Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resour. Res., 34, 921-927.Google Scholar

  • GERKE H. H., VAN GENUCHTEN M. Th., 1993: A dualporosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res., 29, 305-319.Google Scholar

  • HILBERTS A. G. J., VAN LOON E. E., TROCH P. A., PANICONI C., 2004: The hillslope-storage Boussinesq model for non-constant bedrock slope. J. Hydrol., 291, 160-173.Google Scholar

  • HILBERTS A. G. J., TROCH P. A., PANICONI C., BOL J., 2007: Low-dimensional modeling of hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated storage dynamics. Water Resour. Res., 43, W03445.Web of ScienceGoogle Scholar

  • KIRKBY M. J., 1975: Hydrograph modelling strategies, in Process in Physical and Human Geography, edited by R. Peel, M. Chisholm, and P. Haggett, p. 69-90, Heinemann, London.Google Scholar

  • LICHNER L., ELDRIDGE D. J., SCHACHT K., ZHUKOVA N., HOLKO L., SIR M., PECHO J., 2011: Grass Cover Influences Hydrophysical Parameters and Heterogeneity of Water Flow in a Sandy Soil. Pedosphere, 21, 719-729.Web of ScienceGoogle Scholar

  • MAJONE B., BERTAGNOLI A., BELLIN A., RINALDO A., 2005: GEOTRANSF: a continuous non-linear hydrological model. Eos Trans. AGU, 86 (52), Fall Meet. Suppl., Abstract H23C-1441.Google Scholar

  • MAJONE B., BERTAGNOLI A., BELLIN A., 2010: A non-linear runoff generation model in a small Alpine catchment. J. Hydrol., 385, 300-312.Web of ScienceGoogle Scholar

  • MARQUARDT D., 1963: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. on Applied Mathematics, 11, 431-441.Google Scholar

  • PANICONI C., TROCH P. A., VAN LOON E. E., HILBERTS A. G. J., 2003: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model. Water Resour. Res., 39, Article No. 1317.Google Scholar

  • TROCH P. A., VAN LOON E. E., HILBERTS A. G. J., 2002: Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Adv. Water Resour., 25, 637-649.Google Scholar

  • TROCH P. A., PANICONI C., VAN LOON E. E., 2003: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour. Res., 39, Article No. 1316.Google Scholar

  • ŠANDA M., 1999, Tvorba podpovrchového odtoku na svahu. [Doctoral thesis.], CTU in Prague, Prague.Google Scholar

  • ŠANDA M., HRNČÍŘ M., NOVÁK L., CÍSLEROVÁ M., 2006: Impact of the soil profile on the rainfall-runoff process. [In Czech.] J. Hydrol. Hydromech., 54, 183-191.Google Scholar

  • ŠANDA M., CÍSLEROVÁ M., 2009: Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 4, 264-275.Google Scholar

  • VOGEL T., VAN GENUCHTEN M.TH., CÍSLEROVÁ M., 2001: Effects of the Shape of the Soil Hydraulic Functions near Saturation on Variably-Saturated Flow Predictions. Adv. Water Resour., 24, 133-144.Google Scholar

  • VOGEL T., 2005a: Catchment Runoff Generation - Flow Separation Model. In: Hydrologie malého povodí 2005. Prague: The Institute of Hydrodynamics of the ASCR, 351-357.Google Scholar

  • VOGEL T., 2005b: Simplified dual continuum approach to modeling subsurface runoff from a hillslope segment. Abstr. no. EGU05-A-07684, In: Geophysical Research Abstracts Volume 7, Katlenburg-Lindau, Copernicus GmbH.Google Scholar

  • VOGEL T., BŘEZINA J., DOHNAL M., DUŠEK J., 2010a: Physical and numerical coupling in dual-continuum modeling of preferential flow. Vadose Zone J., 9, 260-267.Web of ScienceGoogle Scholar

  • VOGEL T., ŠANDA M., DUŠEK J., DOHNAL M., VOTRUBOVÁ J., 2010b: Using Oxygen-18 to Study the Role of Preferential Flow in the Formation of Hillslope Runoff. Vadose Zone J., 9, 252-259.Web of ScienceGoogle Scholar

  • ZUMR D., SNĚHOTA M., CÍSLEROVÁ M., 2007: Application of Fluorescent Tracers on Observation of Preferential Flow. In: American Geophysical Union Fall Meeting 2007 Abstracts, San Francisco, CA.Google Scholar

About the article


Published Online: 2012-06-14

Published in Print: 2012-06-01


Citation Information: Journal of Hydrology and Hydromechanics, ISSN (Print) 0042-790X, DOI: https://doi.org/10.2478/v10098-012-0007-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
L. Gaál, J. Szolgay, S. Kohnová, K. Hlavčová, J. Parajka, A. Viglione, R. Merz, and G. Blöschl
Hydrological Sciences Journal, 2015, Volume 60, Number 6, Page 968
[2]
M. Šanda, T. Vitvar, A. Kulasová, J. Jankovec, and M. Císlerová
Hydrological Processes, 2014, Volume 28, Number 8, Page 3217
[3]
Michal Dohnal, Tomáš Vogel, Martin Šanda, and Vladimíra Jelínková
Journal of Hydrology and Hydromechanics, 2012, Volume 60, Number 3

Comments (0)

Please log in or register to comment.
Log in