Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year


IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
Online
ISSN
0042-790X
See all formats and pricing
More options …
Volume 60, Issue 3 (Sep 2012)

Issues

Uncertainty Analysis of a Dual-Continuum Model Used to Simulate Subsurface Hillslope Runoff Involving Oxygen-18 as Natural Tracer

Michal Dohnal
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Vogel
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Šanda
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimíra Jelínková
  • Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-30 | DOI: https://doi.org/10.2478/v10098-012-0017-0

Uncertainty Analysis of a Dual-Continuum Model Used to Simulate Subsurface Hillslope Runoff Involving Oxygen-18 as Natural Tracer

A one-dimensional dual-continuum model (also known as dual-permeability model) was used to simulate the lateral component of subsurface runoff and variations in the natural 18O content in hillslope discharge. Model predictions were analyzed using the GLUE generalized likelihood uncertainty estimation procedure. Model sensitivity was evaluated by varying two separate triplets of parameters. The first triplet consisted of key parameters determining the preferential flow regime, i.e., the volumetric proportion of the preferential flow domain, a first-order transfer coefficient characterizing soil water exchange between the two flow domains of the dual-continuum system, and the saturated hydraulic conductivity of the preferential flow domain. The second triplet involved parameters controlling exclusively the soil hydraulic properties of the preferential flow domain, i.e., its retention curve and hydraulic conductivity function. Results of the analysis suggest high sensitivity to all parameters of the first triplet, and large differences in sensitivity to the parameters of the second triplet. The sensitivity analysis also confirmed a significant improvement in the identifiability of preferential flow parameters when 18O content was added to the objective function.

Analýza Nejistot Při Modelování Podpovrchového Odtoku ze Svahu Metodou Duálního Kontinua s Využitím Izotopu Kyslíku 18O Jako Přirozeného Stopovače

K simulacím laterální složky podpovrchového proudění a změn koncentrace izotopu kyslíku 18O ve vodě vytékající ze svahu byl použit jednorozměrný model využívající přístupu duálního kontinua. Nejistota modelových předpovědí byla odhadnuta s využitím metody zobecněné věrohodnosti (GLUE). Citlivost modelu byla zjišťována pomocí variací dvou samostatných trojic parametrů. První trojice sestávala z klíčových parametrů pro určení režimu preferenčního proudění, tj. objemového podílu preferenční domény proudění, přenosového koeficientu charakterizujícího výměnu vody mezi oběma doménami duálního systému a nasycené hydraulické vodivosti preferenční domény. Druhá trojice zahrnovala výhradně parametry určující hydraulické charakteristiky preferenční domény proudění, tj. retenční křivku a funkci hydraulické vodivosti. Z výsledků analýzy vyplývá vysoká citlivost modelu na všechny parametry z první trojice a velké rozdíly v citlivostech parametrů druhé trojice. Analýza dále potvrdila významné zlepšení zjistitelnosti parametrů preferenční domény v případě, kdy je do cílové funkce přidána koncentrace izotopu kyslíku 18O.

Keywords: Hillslope Discharge; Preferential Flow; Dual-Permeability Model; Sensitivity Analysis; GLUE; 18O content

Keywords: odtok ze svahu; preferenční proudění; model duální permeability; analýza citlivosti; GLUE; koncentrace 18O

  • ABBASPOUR K. C., YANG J., 2006: A calibration and uncertainly analysis program for SWAT. Swiss Federal Institute of Aquatic Scientific and Technology.Google Scholar

  • BEVEN K., BINLEY A., 1992: The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process., 6, 279-298.Google Scholar

  • BLAŽKOVÁ S., BEVEN K., TACHECÍ P., KULASOVÁ A., 2002: Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL? Water Resour. Res., 38, 1257, doi:10.1029/2001WR000912.CrossrefGoogle Scholar

  • CHRISTIAENS K., FEYEN J., 2002: Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE-SHE model using the GLUE framework. Hydrol. Process., 16, 373-391.Google Scholar

  • CÍSLEROVÁ M., VOTRUBOVÁ J., 2002: CT derived porosity and flow domains. J. Hydrol., 267, 186-200.Google Scholar

  • DE JONG VAN LIER Q., VAN DAM J. C., METSELAAR K., DE JONG R., DUIJNISVELD W. H. M., 2008: Macroscopic Root Water Uptake Distribution Using a Matric Flux Potential Approach. Vadose zone J., 7, 1065-1078.Web of ScienceGoogle Scholar

  • DOHNAL M., 2008: Soil hydraulic characteristics estimation by means of inverse modeling. [Ph.D. Thesis.] Czech Technical University in Prague.Google Scholar

  • DOLEŽAL F., ZUMR D., VACEK J., ZAVADIL J., BATTILANI A., PLAUBORG F., HANSEN S., ABRAHAMSEN P., BIZIK J., TAKÁČ J., MAZURCZYK W., COUTINHO J., ŠTEKAUEROVÁ V., 2007: Dual Permeability Soil Water Dynamics and Water Uptake by Roots in Irrigated Potato Fields. Biologia, 62, 552-556.Web of ScienceGoogle Scholar

  • DUŠEK J., VOGEL T., LICHNER L., ČIPÁKOVÁ A., DOHNAL M., 2006: Simulated cadmium transport in macroporous soil during heavy rainstorm using dualpermeability approach. Biologia, 61, S251-S254.Google Scholar

  • DUŠEK J., VOGEL T., DOHNAL M., GERKE H. H., 2012: Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Adv. Water Resour., 44, 113-125.Web of ScienceGoogle Scholar

  • FEDDES R. A., KOWALIK P. J., ZARADNY H., 1978: Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands.Google Scholar

  • GERKE H. H., VAN GENUCHTEN M. TH., 1993: A dualporosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res., 29, 305-319.Google Scholar

  • GERKE H. H., DUŠEK J., VOGEL T., KÖHNE J. M., 2007: Two-Dimensional Dual-Permeability Analyses of a Bromide Tracer Experiment on a Tile-Drained Field. Vadose Zone J., 6, 651-667.Web of ScienceGoogle Scholar

  • GUPTA H. V., KLING H., YILMAZ K. K., MARTINEZ G. F., 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 80-91.Web of ScienceGoogle Scholar

  • HANSSON K., LUNDIN L.-C., 2006: Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data. Cold Reg. Sci. Technol., 44, 20-37.Google Scholar

  • KODEŠOVÁ R, KOZÁK J., ŠIMŮNEK J., VACEK O., 2005: Single and dual-permeability models of chlorotoluron transport in the soil profile. Plant Soil Environ., 51, 310-315.Google Scholar

  • LALOY E., WEYNANTS M., BIELDERS C. L., VANCLOOSTER M., JAVAUX M., 2010: How efficient are one-dimensional models to reproduce the hydrodynamic behavior of structured soils subjected to multi-step outflow experiments? J. Hydrol., 393, 37-52.Web of ScienceGoogle Scholar

  • LAMB R., BEVEN K., MYRABO S., 1998: Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model. Adv. Water Resour., 22, 305-317.Google Scholar

  • MONTEITH J. L., 1981: Evaporation and surface temperature. Q. J. R. Meteorol. Soc., 107, 1-27.Google Scholar

  • NASH J. E., SUTCLIFFE J. V., 1970: River flow forecasting through conceptual models: Part 1-a discussion of principles. J. Hydrol., 10, 282-290.Google Scholar

  • PAVELKOVÁ H., DOHNAL M., VOGEL T., 2012: Hillslope runoff generation - comparing different modeling approaches. J. Hydrol. Hydromech., 60, 2, 73-86.Web of ScienceGoogle Scholar

  • ŠANDA M., CÍSLEROVÁ M., 2009: Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 264-275.Google Scholar

  • SIMUNEK J., JARVIS N. J., VAN GENUCHTEN M. Th., GARDENAS A., 2003: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14-35.Google Scholar

  • SNĚHOTA M., CÍSLEROVÁ M., AMIN M. H. G., HALL L. D., 2010: Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373-384.Web of ScienceGoogle Scholar

  • VOGEL T., CÍSLEROVÁ M., HOPMANS J. W., 1991: Porous media with linearly variable hydraulic properties. Water Resour. Res., 27, 2735-2741.Google Scholar

  • VOGEL T., VAN GENUCHTEN M. TH., CÍSLEROVÁ M., 2000: Effect of the shape of soil hydraulic properties near saturation on numerical simulation of variably-saturated flow. Adv. Water. Resour., 24, 133-144. (http://dx.doi.org/10.1016/S0309-1708(00)00037-3)CrossrefGoogle Scholar

  • VOGEL T., BŘEZINA J., DOHNAL M., DUŠEK J., 2010a: Physical and numerical coupling in dual-continuum modeling of preferential flow. Vadose Zone J., 9, 260-267.Web of ScienceGoogle Scholar

  • VOGEL T., ŠANDA M., DUŠEK J., DOHNAL M., VOTRUBOVÁ J., 2010b: Using oxygen-18 to study the role of preferential flow in the formation of hillslope runoff. Vadose Zone J., 9, 252-259.Web of ScienceGoogle Scholar

About the article


Published Online: 2012-08-30

Published in Print: 2012-09-01


Citation Information: Journal of Hydrology and Hydromechanics, ISSN (Print) 0042-790X, DOI: https://doi.org/10.2478/v10098-012-0017-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jaromir Dusek, Tomas Vogel, Michal Dohnal, Johannes A.C. Barth, Martin Sanda, Anne Marx, and Jakub Jankovec
Journal of Hydrology, 2017, Volume 546, Page 309
[2]
Jaromir Dusek and Tomas Vogel
Journal of Hydrology, 2016, Volume 534, Page 590
[3]
Jan Boll, Erin S. Brooks, Brian Crabtree, Shuhui Dun, and Tammo S. Steenhuis
JAWRA Journal of the American Water Resources Association, 2015, Volume 51, Number 2, Page 330
[4]
Jaromir Dusek, Michal Dohnal, Michal Snehota, Martina Sobotkova, Chittaranjan Ray, and Tomas Vogel
Journal of Contaminant Hydrology, 2015, Volume 175-176, Page 1
[5]
Hanne Laine-Kaulio, Soile Backnäs, Tuomo Karvonen, Harri Koivusalo, and Jeffrey J. McDonnell
Water Resources Research, 2014, Volume 50, Number 10, Page 8159
[6]
Jaromir Dusek, Tomas Vogel, and Martin Sanda
Journal of Hydrology, 2012, Volume 475, Page 415

Comments (0)

Please log in or register to comment.
Log in