Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 61, Issue 1 (Mar 2013)


Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model

Luis A. Caballero
  • Department of Biological and Environmental Engineering, 206 Riley Robb Hall, Cornell University, Ithaca, NY, 14853, USA. Tel.: +1 607 255 2489.
  • Department of Environment and Development Studies, Zamorano University, Zamorano, Honduras.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zachary M. Easton
  • Department of Biological Systems Engineering, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, 33446, Research Driver Painter, VA, 23420, USA.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brian K. Richards
  • Department of Biological and Environmental Engineering, 206 Riley Robb Hall, Cornell University, Ithaca, NY, 14853, USA. Tel.: +1 607 255 2489.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tammo S. Steenhuis
  • Department of Biological and Environmental Engineering, 206 Riley Robb Hall, Cornell University, Ithaca, NY, 14853, USA. Tel.: +1 607 255 2489.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/jhh-2013-0003


Water scarcity poses a major threat to food security and human health in Central America and is increasingly recognized as a pressing regional issues caused primarily by deforestation and population pressure. Tools that can reliably simulate the major components of the water balance with the limited data available and needed to drive management decision and protect water supplies in this region. Four adjacent forested headwater catchments in La Tigra National Park, Honduras, ranging in size from 70 to 635 ha were instrumented and discharge measured over a one year period. A semi-distributed water balance model was developed to characterize the bio-hydrology of the four catchments, one of which is primarily cloud forest cover. The water balance model simulated daily stream discharges well, with Nash Sutcliffe model efficiency (E) values ranging from 0.67 to 0.90. Analysis of calibrated model parameters showed that despite all watersheds having similar geologic substrata, the bio-hydrological response the cloud forest indicated less plantavailable water in the root zone and greater groundwater recharge than the non cloud forest cover catchments. This resulted in watershed discharge on a per area basis four times greater from the cloud forest than the other watersheds despite only relatively minor differences in annual rainfall. These results highlight the importance of biological factors (cloud forests in this case) for sustained provision of clean, potable water, and the need to protect the cloud forest areas from destruction, particularly in the populated areas of Central America.

Keywords : Central America; Rainfall-runoff; Thornthwaite-mather; Water balance model; Cloud forest; Monsoonal climate

  • Agudelo, N., 2010. Temperature gradients in the Uyuca Mountain, Francisco Morazán, Honduras. (Unpublished data.) Google Scholar

  • Araujo, M., Costa, M.F., Aureliano, J.T., Silva, M.A., 2008. Mathematical modeling of hydrodynamics and water quality in a tropical reservoir, Northeast Brazil. Braz. J. Aquat Sci Technol., 12, 19-30.Google Scholar

  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment. Part I: Model Development. Journal of the American Water Resources Association (JAWRA), 34, 1, 73-89.Google Scholar

  • Barlow, M., Clarke, T., 2002. Blue Gold: The fight to stop the corporate theft of the world’s fresh water. New York, The New Press, ISBN: 1-5684-816-6.Google Scholar

  • Bayabil, H.K., Tilahun, S.A., Collick, A.S., Yitaferu, B., Steenhuis, T.S., 2010. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of Maybar Watershed. Ecohydrology, 3, 457-466, 2010.CrossrefGoogle Scholar

  • Bonell, M., Bruijnzeel, L.A., 2004. Forest, water and people in the humid tropics: past, present and future hydrological research for integrated land and water management. Cambridge University Press.Google Scholar

  • Bruijnzeel, L.A., 2004. Hydrological functions of tropical forests. Not seeing the soil for the trees? Agriculture, Ecosystems and Environment, 104, 185-228.Google Scholar

  • Bruijnzeel, L.A., 2006. Hydrological impacts of converting tropical montane cloud forest to pasture, with initial reference to northern Costa Rica. DFID Project Report.Google Scholar

  • Bruijnzeel, L.A., Scatena, F.N., 2011. Preface. Hydrometeorology of tropical montane cloud forests. Hydrol. Process., 25, 319-326.Google Scholar

  • Bruijnzeel, L.A., Mulligan, M., Scatena, F.N., 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process., 25, 465-498.Google Scholar

  • Buytaert, W., Wyseure, G., De Bievre, B., Deckers, J., 2004. The use of the linear reservoir concept to quantify the impact of changes in land use on the hydrology of catchments in the Andes. Hydrology and Earth Systems Science, 8, 108-114.Google Scholar

  • Buytaert, W., Wyseure, G., De Bievre, B., Deckers, J., 2005. The effect of land-use changes on the hydrological behavior of Histic Andosols in south Ecuador. Hydrological Processes, 19, 3985-3997.CrossrefGoogle Scholar

  • Buytaert, W., Iñiguez, V., Celleri, R., De Bièvre, B., Wyseure, G., Deckers, J., 2006. Analysis of the water balance of small páramo catchments in south Ecuador. In: J. Krecek and M. Haigh (Eds.): Environmental Role of Wetlands in Headwaters, Springer, pp. 271-281.Google Scholar

  • Buytaert, W., Beven, K. 2011. Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 25, 1784-1799.CrossrefGoogle Scholar

  • Caballero, L.A., Rimmer, A., Easton, Z.M., Steenhuis, T.S., 2012. Rainfall runoff relationships for a cloud forest watershed in Central America: Implications for water resource engineering. Journal of the American Water Resources Association, 48, 1022-1031.CrossrefGoogle Scholar

  • Campanella, P., Dickinson, J., DuBois, R., Dulin, P., Glick, D., Merkel, A., Pool, D., Rios, R., Skillman, D., Talbot, J., 1982. Honduras. Country Environmental Profile. A field study. RB Associates Mclean VA. http://pdf.usaid.gov/pdf_docs/PNABC410.pdf. Last accessed May 2012.Google Scholar

  • Cavelier, J., Jaramillo, M., Solis, D., DeLeon, D., 1997. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology, 193, 83-96.Google Scholar

  • Charlier, J.B. Cattan, P., Moussa, R., Voltz, M., 2008. Hydrological behavior and modeling of a volcanic tropical cultivated catchment. Hydrological Processes. Hydrol. Process., 22, 4355-4370.Google Scholar

  • Collick, A.S., Easton, Z.M., Ashagrie, T., Biruk, B., Tilahun, S., Adgo, E., Awulachew, S.B., Zeleke, G., Steenhuis, T.S., 2009. A simple semi-distributed water balance model for the Ethiopian highlands. Hydrological Processes, 23, 3718- -3727.Google Scholar

  • Easton, Z.M., Fuka, D.R., White, E.D, Collick, A.S., Ashagre, B.B, McCartney M., S.B. Awulachew, S.B., Ahmed, A.A., Steenhuis, T.S., 2010. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci., 14, 1827-1841.CrossrefGoogle Scholar

  • Falkenmark, M., Chapman, T., 1993. Hidróloga comparada: Un enfoque ecológico a los recursos hídricos y de suelo. UNESCOCEDEX, Madrid.Google Scholar

  • Goodrich, D.C., 1992. An Overview of the USDA-ARS Climate Change and Hydrology Program and Analysis of Model Complexity as a Function of Basin Scale. In: Proceedings of a Workshop: Effects of Global Climate Change on Hydrology and Water Resources at Catchment Scale, Tsukuba, Japan, pp. 233-242.Google Scholar

  • Gonzales de Asis, M., O’Leary, D., Ljung, P., Butherworth, J., 2007. Improving Transparency, Integrity and Accountability in Water Supply and Sanitation. The International Bank for Reconstruction and Development/The World Bank. Washington D.C.Google Scholar

  • Harpold, A.A., Lyon, S.W., Troch, P.A., Steenhuis, T.S., 2010. The Hydrological effects of lateral preferential flow paths in a glaciated watershed in the Northeastern USA. Vadose Zone Journal, 9, 397-414.CrossrefGoogle Scholar

  • Hastenrath, S., 2011. The intertropical convergence zone of the eastern pacific revisited. International Journal of Climatology, 22, 347-356.Google Scholar

  • Horvat O., Hlavcova, K., Kohnova, S., Danko, M., 2009. Application of the FRIER distributed model for estimating the impact of land use changes on the water balance in selected basins in Slovakia. J. Hydrol. Hydromech., 57, 4, 213-225.Google Scholar

  • IGN (Instituto Geográfico Nacional), 1956. Geología de Honduras 1 : 50,000 San Juan de Flores Quad.Google Scholar

  • International Organization of Standards (ISO), 1980. Water flow measurement in open channels using weirs and venturi flumes - Part 1: Thin plate weirs. 1438/1-1980(E). Available from Global Engineering Documents at http://global.ihs.com.Google Scholar

  • Jenícek, M., 2009. Runoff changes in areas differing in landuse in the Blanice river basin - application of the deterministic model J. Hydrol. Hydromech., 57, 154-161.Google Scholar

  • Kovacs, G., 1984. Proposal to construct a coordinating matrix for comparative hydrology. Hydrological Sciences Journal- Journal des Sciences Hydrologiques, 29, 435-443.CrossrefGoogle Scholar

  • Lavaire, T, Fiallos, E., 2010. Potencial de captura de agua de los suelos de la microcuenca El Carrizal, Parque Nacional La Tigra, Francisco Morazán, Honduras. Proyecto de especial de graduación, Escuela Agrícola Panamericana, Honduras.Google Scholar

  • Lyon, S.W., McHale, M.R., Walter, M.T., Steenhuis, T.S., 2006. The Impact of Runoff Generation Mechanisms on the Location of Critical Source Areas. Journal of the American Water Resources Association (JAWRA), 42, 793-804.CrossrefGoogle Scholar

  • Mamillapalli, S., Srinivasan, R., Arnold, J.G., Engel, B.A., 1996. Effect of spatial variability on basin scale modeling. In: Proceedings of the Third International Conference/ Workshop on Integrating GIS and Environmental Modeling. National Center for Geographic Information and Analysis, Santa Barbara, California. Available at: http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/program.html.Google Scholar

  • Martinez, M.C., 2008. Potencial de captura de agua de los suelos de Capiro y Zapotillo, Guinope, El Paraíso, Honduras. Proyecto de especial de graduación, Escuela Agrícola Panamericana, Honduras.Google Scholar

  • Mulligan, M., Burke S.M., 2010. Global cloud forests and environmental change in a hydrological context. Final report of DFID FRP project ZF0216.Google Scholar

  • Musiake, K., 2003: Hydrology and water resources in monsoon Asia. A consideration of the necessity of establishing a standing research community of hydrology and water resources in the Asia Pacific region. Hydrological Processes, 17, 2701-2709.CrossrefGoogle Scholar

  • Nash, J.E., Sutcliffe, J., 1970. River flow forecasting through conceptual models, Part I. A discussion of principles. Journal of Hydrology, 10, 282-290.CrossrefGoogle Scholar

  • Pavelkova H., Dohnal, M., Vogel, T., 2012. Hillslope runoff generation - comparing different modeling approaches. J. Hydrol. Hydromech., 60, 73-86.Google Scholar

  • Peranginangin, N. Sakthivadivel, R., Scott, N.R., Kendy, E., Steenhuis, T.S., 2004. Water accounting for conjunctive groundwater/surface water management: Case of the Singkarak- Ombilin River basin, Indonesia Journal of Hydrology, 292, 1-22.Google Scholar

  • PHO (Pan-American Health Organization and World Health Organization). 2000. Evaluación de los Servicios de Agua Potable y Saneamiento 2000 en las Américas. http:// www.bvsde.paho.org/eswww/eva2000/honduras/informe/inf-00.htm. Last accessed May 2012.Google Scholar

  • Peel, M.C., McMahon, T.A., Finlayson B.L., 2004. Continental differences in the variability of annual runoff-update and reassessment. Journal of Hydrology, 295, 185-197.Google Scholar

  • San Martin, O. 2001. Water Resources in Latin America and the Caribbean: Issues and Options. Inter-American Development Bank, Environment Division. http:// www.pnuma.org/aguamiaac/SUBREGIONAL%20MESO/MATERIAL%20ADICIONAL/BIBLIOGRAFIAWEBGRAFIA/Modulo%201%20MIAAC%20en%20el%20contexto%20de%20gestion%20para%20DS/Estado%20del%20Rec%20Hidrico/Doc%204.%20Water%20resources.pdf. Last accesses May 2012.Google Scholar

  • Šanda, M., Císlerová, M., 2009. Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 264- -275.Google Scholar

  • Sivapalan, M., 2003. Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a connection? Hydrological Processes, 17, 1037-1041.CrossrefGoogle Scholar

  • Schellekens, J., 2006. CQ-FLOW: A distributed hydrological model for the prediction of land-cover change, with special reference to the Rio Chiquito catchment, Northwest Costa Rica. The Fiesta Project, Vrije Universiteit, Amsterdam, 2006. http://www.falw.vu/~fiesta/reports/R7991_FTR_Annex3_CQflow-manual-results.pdf. Last accessed May 2012.Google Scholar

  • Shumova, N., 2009. Crop water supply and its relation to yield of spring wheat in the south of Russian plain. J. Hydrol. Hydromech., 57, 2009, 1, 26-39.Google Scholar

  • Stadtmüller, T., 1987. Cloud Forests in the Humid Tropics: A Bibliographic Review. United Nations University (UNU): http://archive.unu.edu/unupress/unupbooks/80670e/80670E00.htm80670e/80670E00.htm. Last accessed May 2012.Google Scholar

  • Stadtmüller, Agudelo, N., 1990. Amount and variability of cloud moisture input in a tropical cloud forest. International Association of Hydrological Sciences Publication, 193, 25- -32.Google Scholar

  • Steenhuis, T.S., van der Molen, W.H., 1986. The Thornthwaite- Mather procedure as a simple engineering method to predict recharge. Journal of Hydrology, 84, 221-229.CrossrefGoogle Scholar

  • Steenhuis, T.S., Collick A.S., Easton Z.M., Leggesse, E.S., Bayabil, H.K., White, E.D., Awulachew, S.B., Adgo, E., Ahmed, A.A., 2009. Predicting discharge and erosion for the Abay (Blue Nile) with a simple model. Hydrological Processes, 23, 3728-3737.Google Scholar

  • Tesemma, Z.K., Mohamed, Y.A., Steenhuis, T.S., 2010. Trends in rainfall and runoff in the Blue Nile Basin: 1964-2003. Hydrological Processes, 25, 3747-3758.Google Scholar

  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev., 38, 55-94.Google Scholar

  • Thornthwaite, C.W., Mather, J.R. 1955. The water balance, Publ. Climatol. Lab. Climatol. Dresel Inst. Technol., 8, 1- -104.Google Scholar

  • UNDP: Adaptation Fund Board Secretariat., 2010. Addressing Climate Change Risks on Water Resources in Honduras: Increased Systemic Resilience and Reduced Vulnerability of the Urban Poor. UNDP PIMS 4399; Atlas IDs-Proposal 00060323, Project 00075904, HND10).Google Scholar

  • Walter, M.T., Steenhuis, T.S., Mehta, V.K., Thongs, D., Zion, M., Schneiderman, E., 2002. Refined conceptualization of TOPMODEL for shallow subsurface flows. Hydrological Processes, 16, 2041-2046.CrossrefGoogle Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-03-01

Citation Information: Journal of Hydrology and Hydromechanics, ISSN (Print) 0042-790X, DOI: https://doi.org/10.2478/jhh-2013-0003.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Fasikaw A. Zimale, Seifu A. Tilahun, Tigist Y. Tebebu, Christian D. Guzman, Linh Hoang, Elliot M. Schneiderman, Eddy J. Langendoen, and Tammo S. Steenhuis
Hydrological Processes, 2017, Volume 31, Number 18, Page 3294
Xiaoyu Gao, Zailin Huo, Zhongyi Qu, Xu Xu, Guanhua Huang, and Tammo S. Steenhuis
Scientific Reports, 2017, Volume 7, Page 43122
Christian D. Guzman, Fasikaw A. Zimale, Tigist Y. Tebebu, Haimanote K. Bayabil, Seifu A. Tilahun, Birru Yitaferu, Tom H.M. Rientjes, and Tammo S. Steenhuis
Hydrological Processes, 2017, Volume 31, Number 6, Page 1239
Abeyou W. Worqlul, Haw Yen, Amy S. Collick, Seifu A. Tilahun, Simon Langan, and Tammo S. Steenhuis
CATENA, 2017, Volume 152, Page 242
Hongkai Gao, Markus Hrachowitz, Nutchanart Sriwongsitanon, Fabrizio Fenicia, Shervan Gharari, and Hubert H. G. Savenije
Water Resources Research, 2016, Volume 52, Number 10, Page 7999
Leandro Campos Pinto, Carlos Rogério de Mello, Lloyd Darrell Norton, Phillip Ray Owens, and Nilton Curi
CATENA, 2016, Volume 143, Page 26
Tigist Y. Tebebu, Tammo S. Steenhuis, Dessalegn C. Dagnew, Christian D. Guzman, Haimanote K. Bayabil, Assefa D. Zegeye, Amy S. Collick, Simon Langan, Charlotte McAllister, Eddy J. Langendoen, Birru Yitaferu, and Seifu A. Tilahun
Frontiers in Earth Science, 2015, Volume 3
Yongqiang Zhang, Jai Vaze, Francis H.S. Chiew, and Ming Li
Journal of Hydrology, 2015, Volume 525, Page 72
Seifu A. Tilahun, Christian D. Guzman, Assefa D. Zegeye, Dessalegn C. Dagnew, Amy S. Collick, Birru Yitaferu, and Tammo S. Steenhuis
Hydrological Processes, 2015, Volume 29, Number 7, Page 1817

Comments (0)

Please log in or register to comment.
Log in