Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 62, Issue 4


Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients

Dario Mantovani
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maik Veste
  • Corresponding author
  • CEBra - Centre for Energy Technology Brandenburg e.V., Friedlieb-Runge-Strasse 3, D-03046 Cottbus, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stella Gypser
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Halke
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laurie Koning
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Freese
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Lebzien
Published Online: 2014-11-15 | DOI: https://doi.org/10.2478/johh-2014-0028


Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis), which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100%) and nitrogen fertilization (0, 50, 100, 150 kg N ha-1). Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed) and 141 l (well-watered) per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.

Keywords : Water use efficiency; Transpiration coefficient; Photosynthesis; Nitrogen; Ecophysiology; Lysimeter; Fallopia


  • Ben-Gal, A., Shani, U., 2002a. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil, 247, 211-221.Web of ScienceGoogle Scholar

  • Ben-Gal, A., Shani, U., 2002b. A highly conductive drainage extension to control the lower boundary condition of lysimeters. Plant and Soil, 239, 9-17.Google Scholar

  • Ben-Gal, A., Karlberg L., Jansson, P.-E., Shani, U., 2003. Temporal robustness of linear relationships between production and transpiration. Plant and Soil, 251, 211-218.Google Scholar

  • Borkowska, H., Molas, R., 2012. Two extremely different crops, Salix and Sida, as a resource of renewable bioenergy. Biomass and Bioenergy, 36, 234-240.Web of ScienceGoogle Scholar

  • Breckle, S.-W., Haverkamp, M., Scheffer, A., Veste, M., 2003. Ökologische Optimierung der Wassernutzung bei Bewässerung in ariden Gebieten. [Ecological optimization of the water use under irrigation in arid regions]. Bielefelder Ökologische Beiträge, 16, 1-110. (In German.) Google Scholar

  • Clifton-Brown, J.C., Lewandowski, I., 2000. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals of Botany, 86, 191-200.CrossrefGoogle Scholar

  • Cosentino, S.L., Patanè, C., Sanzone, E., Copani, V., Foti, S., 2007. Effects of soil water content and nitrogen supply on the productivity of Miscanthus giganteus Greef et Deu. in a Mediterranean environment. Industrial Crops and Products, 25, 1, 75-88.Web of ScienceGoogle Scholar

  • Ehlers, W., 1996. Wasser in Boden und Pflanze. Dynamik des Wasserhaushaltes als Grundlagen von Pflanzenwachstum und Ertrag. [Water in soil and plants. Dynamics of water balance as a basis for plant growth and yield]. Google Scholar

  • Eugen Ulmer Verlag, Stuttgart. (In German.) Ehlers, W., 1997. Zum Transpirationskoeffizienten von Kulturpflanzen unter Feldbedingungen. [About the transpiration coefficient of crop under field conditions]. Pflanzenbauwissenschaften, 1, 97-108. (In German.) Google Scholar

  • Franzaring, J., Schmid, I., Bäuerle, L., Gensheimer, G., Fangmeier, A., 2014. Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. Journal of Applied Botany and Food Quality, 87, 36-45.Google Scholar

  • Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, Th., 2009. The water footprints of energy from biomass: A quantitative assessment and consequences of an increasing share of bioenergy in energy supply. Ecological Economics, 68, 3, 1052-1060.Web of ScienceGoogle Scholar

  • Gollan, T., Turner, N.C., Schulze, E.-D., 1985. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia, 65, 3, 356-362.Google Scholar

  • Gomez, L.D., Steele‐King, C.G., McQueen‐Mason, S.J., 2008. Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytologist, 178, 3, 473-485.Web of ScienceGoogle Scholar

  • Green, D.G., Read, W.L., 1983. Water use efficiency of corn, sunflower and wheat with limiting soil moisture. Canadian Journal of Plant Science, 163, 3, 747-749.Google Scholar

  • Hanks, R.J., 1974. Model for predicting plant yield as influenced by water use. Agronomy Journal, 66, 660-664.CrossrefGoogle Scholar

  • Hanks, R.J., Rasmussen, V.P., 1982. Predicting crop production as related to plant water stress. Advances in Agronomy, 35, 193-215.Google Scholar

  • Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., Obersteiner, M., 2011. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 10, 5690-5702.Web of ScienceGoogle Scholar

  • Ings, J., Mur, L.A., Robson, P.R., Bosch, M., 2013. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Frontiers in Plant Science, 4, 468.Web of ScienceGoogle Scholar

  • Keenan, T., Sabate, S., Gracia, C. (2010). Soil water stress and coupled photosynthesis-conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agricultural and Forest Meteorology, 150, 443-453.Web of ScienceGoogle Scholar

  • Körner, C., 2013. Growth controls photosynthesis - mostly. Nova Acta Leopoldina NF 114, Nr. 391, 273-283.Google Scholar

  • Larcher, W., 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Heidelberg, Berlin, New York.Google Scholar

  • Lazarovitch, N., Ben-Gal, A., Shani, U., 2006. An automated rotating lysimeter system for greenhouse evapotranspiration studies. Vadose Zone Journal, 5, 801-804.CrossrefGoogle Scholar

  • Lebzien, S., Veste, M., Fechner, H., Koning, L., Mantovani, D., Freese, D., 2012. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy. Geophysical Research Abstracts, 14, EGU2012-6060.Google Scholar

  • Lewandowski, I., Böhmel, C., Vetter, A., Hartmann, H. 2009.Google Scholar

  • Landwirtschaftlich produzierte Lignocellulosepflanzen. [Agriculturally produced lignocellulose plants]. In: Kaltschmidt, M., Hartmann, H., Hofbauer, H. (Eds.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. [Principles, techniques and procedures]. Springer, Heidelberg, pp. 88-108. (In German.) Google Scholar

  • Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O., Huisman, W., 2000, Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 19, 209-227.Google Scholar

  • Lewandowski, I., Heinz, A., 2003. Delayed harvest of miscanthus - influences on biomass quantity and quality and environmental impacts of energy production. European Journal of Agronomy, 19, 1, 45-63.Google Scholar

  • Long, S.P., Bernacchi, C.J., 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.CrossrefGoogle Scholar

  • Manderscheid, R., Erbs, M., Weigel, H.-J., 2013. Ecophysiological traits related to the growth response of maize and sorghum to drought and free air CO2 enrichment. Verhandlungen der Gesellschaft für Ökologie, 43, 23.Google Scholar

  • Mantovani, D., Freese, D., Veste, M., Hüttl, R.F., 2011. Modified wick lysimeters for critical water use efficiency evaluation and yield crop modelling. In: Proc. 14th Lysimeter Conference “Lysimeters in Climate Change Research and Water Resources Management”, pp. 245-248.Google Scholar

  • Mantovani, D., Veste, M., Badorreck, A., Freese, D., 2013. Evaluation of fast growing tree transpiration under different soil moisture regimes using wicked lysimeters. iForest - Journal of Biogeosciences and Forestry, 6, 190-200.Web of ScienceGoogle Scholar

  • Midgley, G., Veste, M., von Willert, D.J., Davis, G.W., Steinberg, M., Powrie, L.W, 1997. Comparative field performance of three different gas exchange systems. Bothalia, 27, 1, 83-89.Google Scholar

  • Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K., 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14, 2, 578-597.Google Scholar

  • Phong, V.V.L., Kumar, P., Drewry, D.T., 2011. Implications for the Hydrologic Cycle Under Climate Change Due to the Expansion of Bioenergy Crops in the Midwestern United States. Proceedings of the National Academy of Science of the United States of America, 108, 15085-15090.Web of ScienceGoogle Scholar

  • Pude, R., Franken, H., 2001. Reynoutria bohemica - eine Alternative zu Miscanthus x giganteus? Die Bodenkultur, 52, 1, 19-27.Google Scholar

  • Schittenhelm, S., Kruse, S., 2009. Wasserausnutzungseffizienz von Energiepflanzen. [Water use efficiency of energy crops]. 2. Symposium Energiepflanzen 2009. Gülzower Fachgespräche, 34, 108-118. (In German.) Google Scholar

  • Schwarz, K.-U., Greef, J.M., Schnug, E., 1995. Untersuchungen zur Etablierung und Biomassebildung von Miscanthus giganteus unter verschiedenen Umweltbedingungen. [Studies on the establishment and biomass production of Miscanthus giganteus under different environmental conditions]. Landbauforschung Sonderheft 155, 1-122. (In German.) Google Scholar

  • Seppälä, M., Antti, L., Jukka, R., 2013. Screening of novel plants for biogas production in northern conditions. Bioresource Technology, 139, 355-362.Google Scholar

  • Shani, U., Ben-Gal, A., Tripler, E., Dudley, L.M., 2007. Plant response to the soil environment: An analytical model integrating yield, water, soil type, and salinity. Water Resour. Res., 43, W08418, doi: 10.1029/2006WR005313.CrossrefWeb of ScienceGoogle Scholar

  • Strašil, Z., Kára, J., 2010. Study of knotweed (Reynoutria) as possible phytomass resource for energy and industrial utilization. Research in Agricultural Engineering, 56, 3, 85-91.Google Scholar

  • Veste, M., Herppich, W., 1995. Diurnal and seasonal fluctuations in the atmospheric CO2 concentration and their influence on the photosynthesis of Populus tremula. Photosynthetica, 31, 3, 371-378. Google Scholar

  • Veste, M., Kriebitzsch, W.-U., 2013. Einfluss von Trockenstress auf Photosynthese, Transpiration und Wachstum junger Robinien (Robinia pseudoacacia L.). [Effect of drought stress on photosynthesis, transpiration and growth of young black locust (Robinia pseudoacacia L.)]. Forstarchiv, 84, 35-42. (In German.) Google Scholar

  • Veste, M., Mantovani, D., Koning, L., Lebzien, S., Freese, D., 2011. Improving nutrient and water use efficiency of IGNISCUM - a new bioenergy crop. Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 2011 "Böden verstehen - Böden nutzen - Böden fit machen", 3-9Google Scholar

  • September 2011, Berlin, Germany. Berichte der Deutschen Bodenkundlichen Gesellschaft. DBG, 4 p. Online http://eprints.dbges.de/739/ Google Scholar

  • Veste, M., Quinkenstein, A., Freese, D., 2014. BioSida - Anbau von Sida als neue Kultur für Bioenergie und zur Inwertsetzung degradierter Standorte. [Cultivation of Sida as a new culture for bioenergy and valorisation of degraded sites]. Arbeitsgemeinschaft industrielle Forschung, Report, Cottbus, pp. 1-35. (In German.) Google Scholar

  • Vetter, A., Heiermann, M., Toews, T. (Eds.), 2009. Anbausysteme für Energiepflanzen. [Cropping systems for energy plants]. DLG Verlag Frankfurt/Main.Google Scholar

  • Weiland, P., 2010. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849-860. (In German.) CrossrefGoogle Scholar

About the article

Received: 2014-05-23

Accepted: 2014-06-14

Published Online: 2014-11-15

Published in Print: 2014-12-01

Citation Information: Journal of Hydrology and Hydromechanics, Volume 62, Issue 4, Pages 316–323, ISSN (Online) 0042-790X, DOI: https://doi.org/10.2478/johh-2014-0028.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sushil Thapa, Bob A. Stewart, Qingwu Xue, Yuanquan Chen, and Ricardo Aroca
PLOS ONE, 2017, Volume 12, Number 3, Page e0173511
B. Schoo, K. P. Wittich, U. Böttcher, H. Kage, and S. Schittenhelm
Journal of Agronomy and Crop Science, 2017, Volume 203, Number 2, Page 117

Comments (0)

Please log in or register to comment.
Log in