Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 62, Issue 4


Rainfall interception and spatial variability of throughfall in spruce stand

Michal Dohnal
  • Corresponding author
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Černý
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Votrubová
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Tesař
  • Institute of Hydrodynamics of the Academy of Sciences of the Czech Republic, Pod Paťankou 5, Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-15 | DOI: https://doi.org/10.2478/johh-2014-0037


The interception was recognized as an important part of the catchment water balance in temperate climate. The mountainous forest ecosystem at experimental headwater catchment Liz has been subject of long-term monitoring. Unique dataset in terms of time resolution serves to determine canopy storage capacity and free throughfall. Spatial variability of throughfall was studied using one weighing and five tipping bucket rain gauges. The basic characteristics of forest affecting interception process were determined for the Norway spruce stand at the experimental area - the leaf area index was 5.66 - 6.00 m2 m-2, the basal area was 55.7 m2 ha-1, and the crown closure above individual rain gauges was between 19 and 95%. The total interception loss in both growing seasons analyzed was 34.5%. The mean value of the interception capacity determined was about 2 mm. Throughfall exhibited high variability from place to place and it was strongly affected by character of rainfall. On the other hand, spatial pattern of throughfall in average showed low variability.

Keywords : Interception loss; Interception capacity; Free throughfall; Evaporation; Hydrological balance of vegetation cover.


  • Barbier, S., Balandier, P., Gosselin, F., 2009. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Annals of Forest Science Journal, 66, 602.Web of ScienceGoogle Scholar

  • Breuer, L., Eckhardt, K., Frede, H.-G., 2003. Plant parameter values for models in temperate climates. Ecological Modelling, 169, 237-293.Google Scholar

  • Brutsaert, W., 2005. Hydrology: An introduction. Cambridge University Press, Cambridge.Google Scholar

  • Buchtele, J., Buchtelová, M., Tesař, M., 2006. Role of vegetation in the variability of water regimes in the Šumava Mts. forest. Biologia, 61, S246-S250.Google Scholar

  • Coenders-Gerrits, A.M.J., van der Ent, R.J., Bogaard, T.A., Wang-Erlandsson, L., Hrachowitz, M., Savenije, H.H.G., 2014. Uncertainties in transpiration estimates. Nature, 506, E1-E2.Web of ScienceGoogle Scholar

  • Crockford, R.H., Richardson, D.P., 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes, 14, 2903-2920.Google Scholar

  • Eliáš, V., Tesař, M., Buchtele, J., 1995. Occult precipitation: sampling, chemical analysis and process modelling in the Sumava Mts. (Czech Republic) and in the Taunus Mts. (Germany). J. Hydrol., 166, 409-420.Google Scholar

  • Fišák, J., Tesař, M., Řezáčová, D., Eliáš, V., Weignerová, V., Fottová, D., 2002. Pollutant concentrations in fog and low cloud water at selected sites of the Czech Republic. Atmospheric Research, 64, 75-87.Google Scholar

  • Gash, J.H.C., 1979. An analytical model of rainfall interception by forests. Q.J.R. Met. Soc., 105, 43-55.Google Scholar

  • Gerrits, A.M.J., 2010. The role of interception in the hydrological cycle. PhD thesis. Delft University of Technology, Delft, 146 pp.Google Scholar

  • Gower, S.T., Norman, J.M., 1990. Rapid estimation of leaf area index in forests using the LI-COR LAI-2000. Ecology, 72, 1896-1900.Google Scholar

  • Grelle, A., Lundberg, A., Lindroth, A., Morén, A.-S., Cienciala, E., 1997. Evaporation components of a boreal forest: variations during the growing season. Journal of Hydrology, 197, 70-87.Google Scholar

  • Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 594-599.Web of ScienceGoogle Scholar

  • Homolová, L., Malenovský, Z., Hanuš, J., Tomášková, I., Dvořáková, M., Pokorný, R., 2007. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. In: Proc.10th International symposium on Physical measurements and signatures in remote sensing, ISPMSRS 2007, Davos.Google Scholar

  • Kantor, P., Šach, F., Černohous, V., 2009. Development of foliage biomass of young spruce and beech stands in the mountain water balance research area. Journal of Forest Science, 55, 51-62.Google Scholar

  • Klaassen, W., Bosveld, F., de Water, E., 1998. Water storage and evaporation as constituents of rainfall interception. J. Hydrol., 212-213, 36-50.Google Scholar

  • Leyton, L., Reynolds, E.R.C., Thompson, F.B., 1967. Rainfall interception in forest and moorland. In: Sopper, W.E., Lull, H.W. (Eds.): Proc. Int. symp. on Forest hydrology, Pergamon Press, New York, pp.163-168.Google Scholar

  • Link, T.E., Unsworth, M., Marks, D., 2004. The dynamics of rainfall interception by a seasonal temperate rainforest. Agricultural and Forest Meteorology, 124, 171-191.Google Scholar

  • Liu, S., 1997: A new model for the prediction of rainfall interception in forest canopies. Ecological Modelling, 99, 151-159.Google Scholar

  • Majerčáková, O., 1984. Modeling of interception as a loss component in the process of runoff generation. J. Hydrol. Hydromech., 32, 364-379. (In Slovak).Google Scholar

  • Nadezhdina, N., David, T.S., David, J.S., Ferreira, M.I., Dohnal, M., Tesař, M. et al., 2010: Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrol., 3, 431-444.Google Scholar

  • Norman, J.M., Jarvis, P.G., 1975. Photosynthesis in Sitka spruce, V. Radiation penetration theory and a test case. Journal of Applied Ecology, 12, 839-878.Google Scholar

  • Pallardy, S.G., 2008. Physiology of Woody Plants. Third Edition. Elsevier Inc., London, UK.Google Scholar

  • Peng, H., Zhao, C., Feng, Z., Xu, Z., Wang, C., Zhao, Y., 2014. Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China. Hydrological Processes, 28, 1734-1741.Web of ScienceGoogle Scholar

  • Pokorný, R., 2002. Leaf area index in forest stands. PhD Thesis. Mendel University, Brno.Google Scholar

  • Pražák, J., Šír, M., Tesař, M., 1996. Parameters determining plant transpiration under conditions of sufficient soil moisture. J. Hydrol., 183, 425-431.Google Scholar

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an opensource platform for biological-image analysis. Nature Methods, 9, 676-682.Web of ScienceGoogle Scholar

  • Tesař, M., Balek, J., Šír, M., 2006. Hydrological research in the Volyňka basin (Bohemian Forest, Czech Republic). J. Hydrol. Hydromech., 54, 137-150. Google Scholar

  • van Heerwaarden, C.C., 2011. Surface evaporation and water vapor transport in the convective boundary layer. PhD Thesis. Wageningen University, Wageningen, 158 pp.Google Scholar

  • Vogel, T., Dohnal, M., Dušek, J., Votrubová, J., Tesař, M., 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil water redistribution.Google Scholar

  • Vadose Zone J., 12, doi:10.2136/vzj2012.0154.CrossrefGoogle Scholar

  • Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res., 7, 125-137.Google Scholar

  • Wang, G.L., Eltahir, E.A.B., 2000. Modeling the biosphereatmosphere system: The impact of the subgrid variability in rainfall interception. Journal of Climate, 13, 2887-2899.CrossrefGoogle Scholar

  • Wang, G.X., Liu, G.S., Li, C.J., 2012: Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. Journal of Hydrology, 444, 22-33.Web of ScienceGoogle Scholar

  • Waterloo, M.J., 1994. Water and nutrient dynamics of Pinus Caribea plantation forests on former grassland soils in Southwest Viti Levu, Fiji. Vrije Universiteit, Amsterdam, 478 pp.Google Scholar

  • Zehe, E., Graeff, T., Morgner, M., Bauer, A., Bronstert, A., 2010: Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrology and Earth System Sciences, 14, 873-889.Web of ScienceGoogle Scholar

  • Zierl, B., 2001. A water balance model to simulate drought in forested ecosystems and its application to the entire forested area in Switzerland. J. Hydrol., 242, 115-136. Google Scholar

About the article

Received: 2014-06-12

Accepted: 2014-09-05

Published Online: 2014-11-15

Published in Print: 2014-12-01

Citation Information: Journal of Hydrology and Hydromechanics, Volume 62, Issue 4, Pages 277–284, ISSN (Online) 0042-790X, DOI: https://doi.org/10.2478/johh-2014-0037.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexander Land, Sabine Remmele, Johannes Schönbein, Manfred Küppers, and Reiner Zimmermann
Dendrochronologia, 2017, Volume 45, Page 156
Vaclav Sipek and Miroslav Tesar
Hydrological Processes, 2017, Volume 31, Number 6, Page 1438
Ya-feng Zhang, Xin-ping Wang, Rui Hu, and Yan-xia Pan
Journal of Hydrology, 2016, Volume 539, Page 406

Comments (0)

Please log in or register to comment.
Log in