Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 64, Issue 1


Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany

Stella Gypser
  • Corresponding author
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maik Veste
  • Brandenburg University of Technology Cottbus-Senftenberg, Chair of Soil Protection and Recultivation, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany.
  • University of Hohenheim, Institute of Botany - Experimental Ecology, Garbenstrasse 30, 70599 Stuttgart, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Fischer
  • Brandenburg University of Technology Cottbus-Senftenberg, Central Analytical Laboratory, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philipp Lange
  • Dresden University of Technology, Department of Chemistry and Food Chemistry, Mommsenstraße 4, 01062 Dresden, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-26 | DOI: https://doi.org/10.1515/johh-2016-0009


Investigations were done on two former open-cast lignite mining sites under reclamation, an artificial sand dune in Welzow Süd, and a forest plantation in Schlabendorf Süd (Brandenburg, Germany). The aim was to associate the topsoil hydrological characteristics of green algae dominated as well as moss and soil lichen dominated biological soil crusts during crustal succession with their water retention and the repellency index on sandy soils under temperate climate and different reliefs.

The investigation of the repellency index showed on the one hand an increase due to the cross-linking of sand particles by green algae which resulted in clogging of pores. On the other hand, the occurrence of moss plants led to a decrease of the repellency index due to absorption caused by bryophytes. The determination of the water retention curves showed an increase of the water holding capacity, especially in conjunction with the growth of green algae layer. The pore-related van Genuchten parameter indicate a clay-like behaviour of the developed soil crusts. Because of the inhomogeneous distribution of lichens and mosses as well as the varying thickness of green algae layers, the water retention differed between the study sites and between samples of similar developmental stages. However, similar tendencies of water retention and water repellency related to the soil crust formation were observed.

Biological soil crusts should be considered after disturbances in the context of reclamation measures, because the initial development of green algae biocrusts lead to an increasing repellency index, while the occurrence of mosses and a gain in organic matter enhance the water holding capacity. Thus, the succession of biocrusts and their small-scale succession promote the development of soil and ecosystem.

Keywords: Repellency index; pF-curves; Water holding capacity; Biological soil crusts


  • Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process, 20, 15, 3159–3178.CrossrefGoogle Scholar

  • Belnap, J., Lange, O.L., (Eds.), 2003. Biological Soil Crusts: Structure, Function and Management. Ecological Studies 150. 2nd ed. Springer, Heidelberg.Google Scholar

  • Blume, H.-P., Brümmer, G.W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.M., Thiele-Bruhn, S., Welp, G., 2010. Scheffer/Schachtschabel Lehrbuch der Bodenkunde. [Textbook of soil science]. Revised 16th printing. Spektrum, Heidelberg. (In German.)Google Scholar

  • Bowker, M.A., 2007. Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor. Ecol., 15, 1, 13–23.CrossrefGoogle Scholar

  • Bowker, M.A., Maestre, F.T., Eldridge, D., Belnap, J., Castillo-Monroy, A., Escolarm C., Soliveres, S., 2014. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers. Conserv., 23, 1619–1637.CrossrefGoogle Scholar

  • Bradshaw, A., 1997. Resoration of mined lands - using natural processes. Ecol. Eng., 8, 255–269.CrossrefGoogle Scholar

  • Breckle, S.-W, Yair, A., Veste, M. (Eds.). 2008. Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecol. Stud., No. 200, Springer, Berlin Heidelberg New York.Google Scholar

  • Brevik, E.C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., Van Oosten, K., 2015. The interdisciplinary nature of SOIL. Soil, 1, 117–129.CrossrefGoogle Scholar

  • Brock, T.D., 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science, 179, 4072, 480–483.Google Scholar

  • Buczko, U., Bens, O., 2006. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Sci. Soc. Am. J., 70, 718–727.CrossrefGoogle Scholar

  • Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–18.CrossrefGoogle Scholar

  • Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 317–336.CrossrefGoogle Scholar

  • Buczko, U., Bens, O., Hüttl, R.F., 2007. Changes in soil water repellency in a pine–beech forest transformation chronosequence: influence of antecedent rainfall and air temperatures. Ecol. Eng., 31, 154–164.CrossrefGoogle Scholar

  • Büdel, B., 2003. Biological soil crusts of european temperate and mediterranean regions. In: Belnap, J., Lange, O.L. (Eds.): Biological Soil Crusts: Structure, Function and Management. Ecol. Stud., No. 150, Revised 2nd. printing, Springer, Berlin, Heidelberg, pp. 75–86.Google Scholar

  • Büdel, B., Veste, M., 2008. Biological crusts. In: Breckle, S.-W, Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecological Studies 200, Springer, Berlin Heidelberg New York, pp. 149–155.Google Scholar

  • Chen, L., Rossi, F., Deng, S., Liu, Y., Wang, G., Adessi, A., De Philippis, R., 2014. Macromolecular and chemical features of excreted extracellular polysaccharides in induced biological soil crusts of different ages. Soil Biol. Biochem., 78, 1–9.CrossrefGoogle Scholar

  • Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., De Philippis, R., 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol. Biochem., 68, 62–70.CrossrefGoogle Scholar

  • Cooke, J.A., 1999. Mining. In: Walker, L.R. (Ed.): ecosystems of disturbed ground, Ecosystems of the World. 16th ed., Elsevier, Amsterdam, pp. 365–384.Google Scholar

  • Cutler, N.A., Belyea, L.R., Dugmore, A.J., 2008. The spatiotemporal dynamics of a primary succession. J. Ecol. 96, 231–246.CrossrefGoogle Scholar

  • Deutscher Wetterdienst, Bundesministerium für Verkehr und digitale Infrastruktur online, 2014. Mittelwerte 30-jähriger Perioden. Mittelwerte für den aktuellen Stationsstandort (2012) für den Zeitraum 1981–2010. [Average of 30 years period. Average for the current station site (2012) for the period 1981–2012]. URL:http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_menu2_presse&T98029gsbDocumentPath=Navigation%2FPresse%2FKlimainformationen%2Fbeschreibung__mittelwerte__node.html%3F__nnn%3Dtrue, [28.04.2014].

  • Dümig, A., Veste, M., Hagedorn, F., Fischer, T., Lange, P., Spröte, R., Kögel-Knabner, I., 2013. Biological soil crusts on initial soils: organic carbon dynamics and chemistry under temperate climatic conditions. Biogeosciences Discuss., 10, 851–894.CrossrefGoogle Scholar

  • Dümig, A., Veste, M., Hagedorn, F., Fischer, T., Lange, P., Spröte, R., Kögel-Knabner, I., 2014. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. Catena, 122, 196–208.CrossrefGoogle Scholar

  • Dutta, S., Rajaram, R., Robinson, B., 2005. Mineland reclamation. In: Rajaram, V., Dutta, S., Parameswaran, K. (Ed.): Sustainable Mining Practices - A Global Perspective. Taylor & Francis, Leiden, pp. 179–191.Google Scholar

  • Eldridge, D.J., Zaady, E., Shachack, M., 2002. Microphytic crusts, shrub patches, and water harvesting in the Negev desert: the Shikim system. Landscape Ecol., 17, 6, 587–597.CrossrefGoogle Scholar

  • Eldridge, D.J., Bowker, M.A., Maestre, F.T., Alonso, P., Mau, R.L., Papadopoulos, J., Escudero, A., 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid mediterranean grassland. Ecosystems, 13, 499–510.CrossrefGoogle Scholar

  • Elliott, E.T., 1985. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J., 50, 627–633.CrossrefGoogle Scholar

  • Fischer, T., Veste, M., Wiehe, W., Lange, P., 2010. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 1, 47–52.CrossrefGoogle Scholar

  • Fischer, T., Yair, A., Veste, M., 2012. Microstructure and hydraulic properties of biological soil crusts on sand dunes: a comparison between arid and temperate climates. Biogeosciences Discuss., 9, 12711–12734.CrossrefGoogle Scholar

  • Fischer, T., Yair, A., Veste, M., Geppert, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and a temperate site. Catena, 110, 155–160.CrossrefGoogle Scholar

  • Fischer, T., Gypser, S., Subbotina, M., Veste, M., 2014. Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site. J. Hydrol. Hydromech., 62, 293–302.Google Scholar

  • Gerwin, W., Raab, T., Biemelt, D., Bens, O., Hüttl, R.F., 2009. The artificial water catchment „Chicken Creek” as an observatory for critical zone processes and structures. Hydrol. Earth Syst. Sci. Discuss., 6, 1769–1795.CrossrefGoogle Scholar

  • Gypser, S., Veste, M., Fischer, T., Lange, P., 2015. Formation of soil lichen crusts at reclaimed post-mining sites, Lower Lusatia, North-east Germany. Graphis Scripta, 27, 3–14.Google Scholar

  • Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Europ. J. Soil Sci., 50, 1, 35–40.CrossrefGoogle Scholar

  • Hallett, P.D., Baumgartl T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 1, 184–190.CrossrefGoogle Scholar

  • Hangen, E., Gerke, H.H., Schaaf, W., Hüttl, R.F., 2005. Assessment of preferential flow processes in a forest-reclaimed lignitic mine soil by multicell sampling of drainage water and three tracers. J. Hydrol., 303, 1–4, 16–37.CrossrefGoogle Scholar

  • Hartmann, M., 2008. Bodenphysikalische Eigenschaften, Benetzbarkeit und Wasserhaushalt von Waldböden unter Flugascheeinfluss. [Soil physical properties, wettabilities and hydrologic balance of fly ash affected forest soils]. Diss., Christian-Albrechts-Universität, Kiel. (In German.)Google Scholar

  • Hoppert, M., Reimer, R., Kemmling, A., Schröder, A., Günzl, B., Heinken, T., 2004. Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol. J., 21, 3, 183–191.CrossrefGoogle Scholar

  • Housman, D.C., Powers, H.H., Collins, A.D., Belang, J., 2006. Carbon and nitrogen fixation differ between successional stags of biological soil crusts in the Colorado Plateau and Chihuahua Desert. J. Arid Environ., 66, 4, 620–634.CrossrefGoogle Scholar

  • Hüttl, R.F., 1998. Ecology of post-mining landscapes in the Lusatian lignite mining district, Germany. In: Fox, H.R., Moore, H.M., McIntosh, A.D. (Eds.): Land reclamation - achieving sustainable benefits. Balkema, Rotterdam, pp. 187–192.Google Scholar

  • International Council on Mining and Metals, 2012. Trends in the mining and metals industry. Mining’s contribution to sustainable development, London.Google Scholar

  • Jungerius, P.D., Dekker, L.W., 1990. Water erosion in the dunes. In: Bakker, T.W.M., Jungerius, P.D., Klijn, J.A. (Ed.): Dunes of the European Coasts. Catena Supplement 18, pp. 185–194.Google Scholar

  • Katznelson, R., 1989. Clogging of groundwater recharge basins by cyanobacterial mats. FEMS Microb. Ecol., 62, 4, 231–242.Google Scholar

  • Kidron, G., 2014. Sink plot for runoff measurements on semi-flat terrains: preliminary data and their potential hydrological and ecological implications. J. Hydrol. Hydromech., 62, 4, 303–308.Google Scholar

  • Kidron, G.J., Yair, A., 1997. Rainfall-runoff relationship over encrusted dune surfaces, Nizzana, Western Negev, Israel. earth Surf. Processes, 22, 1169–1184.CrossrefGoogle Scholar

  • Kidron, G., Yaalon, D.H., Vonshak, A., 1999. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci., 164, 1, 18–27.CrossrefGoogle Scholar

  • Kidron, G.J., Yair, A., Vonshak, A., Abeliovich, A., 2003. Microbiotic crust control runoff generation on sand dunes in the Negev Desert. Water Resour. Res., 39, 4, 1–5.Google Scholar

  • Krümmelbein, J., Horn, R., Raab, T., Bens, O., Hüttl, R.F., 2010. Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany. Soil Till. Res., 111, 19–25.CrossrefGoogle Scholar

  • Krümmelbein, J., Bens, O., Raab, T., Naeth, M.A., 2012. A history of lignite coal mining and reclamation practices in Lusatia, eastern Germany. Can. J. Soil Sci., 92, 53–66.Google Scholar

  • Lambers, H., Raven, J.A., Shaver, G.R., Smith, S.E., 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol., 23, 95–103.CrossrefGoogle Scholar

  • Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.CrossrefGoogle Scholar

  • Lukešová, A., 2001. Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor. Ecol., 9, 4, 341–350.CrossrefGoogle Scholar

  • Mager, D.M., Thomas, A.D., 2011. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J. Arid Environ., 75, 2, 91–97.CrossrefGoogle Scholar

  • Malam Issa, O., Défarge, C., Trichet, J., Valentin, C., Rajot, J.L., 2009. Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. Catena, 77, 1, 48–55.CrossrefGoogle Scholar

  • Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., 1996. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microb. Ecol., 21, 2, 121–130.Google Scholar

  • Menon, M., Yuan, Q., Jia, X., Dougill, A.J., Hoon, S.R., Thomas, A.D., Williams, R.A., 2011. Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modeling. J. Hydrol., 397, 1–2, 47–54.CrossrefGoogle Scholar

  • Nordstrom, D.K., Alpers, C.N., 1999. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. USA 96, 3455–3463.CrossrefGoogle Scholar

  • Passioura, J.B., 1991. Soil structure and plant growth. Aust. J. Soil Res., 29, 717–728.CrossrefGoogle Scholar

  • Pluis, J.L.A., 1994. Algal crust formation in the inland dune area, Laarder Wasmeer, the Netherlands. Vegetatio, 113, 41–51.CrossrefGoogle Scholar

  • Reuter, R., 1997. Sewage sludge as an organic amendment for reclaiming surface mine wastes. Restoration and Reclamation Review, 2, 7, 1–6.Google Scholar

  • Roberts, J.A., Daniels, W.L., Burger, J.A., Bell, J.C., 1988. Early Stages of Mine Soil Genesis in a Southwest Virginia Spoil Lithosequence. Soil Sci. Soc. Am. J., 52, 3, 716–723.CrossrefGoogle Scholar

  • Rosentreter, R., Belnap, J., 2003. Biological soil crusts of North America. In: Belnap, J., Lange, O.L. (Eds.): Biological Soil Crusts: Structure, Function and Management. Ecol. Stud., No. 150, Revised 2nd. printing, Springer, Berlin, Heidelberg, pp. 31–50.Google Scholar

  • Rossi, F., Potrafka, R.M., Pichel, F.G., De Philippis, R., 2012. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol. Biochem., 46, 33–40.CrossrefGoogle Scholar

  • Schaaf, W., Hüttl., R.F., 2005. Soil chemistry and tree nutrition of post-lignite-mining sites. J. Plant Nutr. Soil Sci., 168, 4, 483–488.CrossrefGoogle Scholar

  • Šourková, M., Frouz, J., Fettweis, U., Bens, O., Hüttl, R.F., Šantrůčková, H., 2005. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma, 129, 1–2, 73–80.CrossrefGoogle Scholar

  • Spröte, R., 2013. Entwicklung von Benetzungshemmung auf sandigen Substraten unter dem Einfluss biologischer Bodenkrusten und höherer Vegetationsentwicklung. [Development of repellency on sandy substrate influenced by biological soil crusts and development of higher vegetation]. Diss. Cottbuser Schriften zu Bodenschutz und Rekultivierung, No. 44, Brandenburgische Technische Universität, Cottbus. (In German.)Google Scholar

  • Spröte, R., Fischer, T., Veste, M., Raab, T., Wiehe, W., Lange, P., Bens, O., Hüttl, R.F., 2010. Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphologie, 4, 359–370.CrossrefGoogle Scholar

  • Spröte, R., Veste, M., Fischer, T., Lange, P., Bens, O., Raab, T., Hüttl, R.F., 2011. Wie beeinflussen Kiefern (Pinus sylvestris L.) die Entwicklung der Benetzungshemmung auf Sandböden? [How does Pinus sylvestrius (L.) affect the development of repellency on sandy soils?]. In: Jahrestagung der deutschen Bodenkundlichen Gesellschaft 2011, Berlin. (In German.)Google Scholar

  • Statistik der Kohlewirtschaft e.V., 2013. Braunkohleförderung nach Ländern ab 2000. [Lignite mining sorted by country from 2000]. URL http://www.kohlenstatistik.de/16-0-International.html, Cologne.

  • Steinlein, T., Wittland, M., 2006. The role of soil seed bank, germination ecology and the influence of soil crusts for the successful establishment of dominant plant species on sandy soils. In: Jiarong, G., Veste, M., Beyschlag, W. (Eds.): Restoration and stability of ecosystems in arid and semi-arid areas. Science Press, Beijing, pp. 65–76.Google Scholar

  • Stewart, K.J., Siciliano, S.D., 2015. Potential contribution of native herbs and biological soil crusts to restoration of the biogeochemical nitrogen cycle in mining impacted sites in Northern Canada. Ecol. Restor., 33, 30–42.Google Scholar

  • Verrecchia, E., Yair, A., Kidron, G.J., Verrecchia, K., 1995. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev desert, Israel. J. Arid Environ., 29, 4, 427–437.CrossrefGoogle Scholar

  • Veste, M., 2005. Importance of biological soil crusts for rehabilitation of degraded arid and semi-arid ecosystems. Sci. Soil Water Conserv., 3, 4, 42–47.Google Scholar

  • Veste, M., 2008. Spatial and temporal variation of the plant water status and gas exchange. In: Breckle, S.-W, Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecol. Stud., No. 200, Springer, Berlin Heidelberg New York, pp. 367–375.Google Scholar

  • Veste, M., Breckle, S.-W., Eggert, K., Littmann, T., 2011. Vegetation pattern in arid sand dunes controlled by biological soil crusts along a climatic gradient in the Northern Negev desert. Basic and Appl. Dryland Res., 5, 1–16.CrossrefGoogle Scholar

  • Walker, L.R., Willig, M.R., 1999. An introduction to terrestrial disturbances. In: Walker, L.R. (Ed.): ecosystems of disturbed ground, Ecosystems of the World. 16th ed., Elsevier, Amsterdam, pp. 1–16.Google Scholar

  • Warren, S.D., 2003. Synopsis: Influence of biological soil crusts on arid land hydrology and soil stability. In: Belnap, J., Lange, O.L. (Eds.): Biological Soil Crusts: Structure, Function and Management. Ecol. Stud., No. 150, Revised 2nd. printing, Springer, Berlin, Heidelberg, pp. 349–360.Google Scholar

  • Wiegleb, G., Felinks, B., 2001. Primary succession in post-mining landscapes of Lower Lusatia - chance or necessity. Ecol. Eng., 17, 2–3, 199–217.CrossrefGoogle Scholar

  • Williams, J.D., Dobrowolski, J.P., West, N.E., 1999. Microbiotic crust influence on unsaturated hydraulic conductivity. Arid Soil Res. Rehab., 13, 2, 145–154.Google Scholar

  • Yair, A., 2008. Effects of surface runoff and subsurface flow on the spatial variability of water resources in longitudinal dunes. In: Breckle, S.-W, Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecol. Stud., No. 200, Springer, Berlin Heidelberg New York, pp. 251–269.Google Scholar

  • Yair, A., Veste, M., Almog, R., Breckle, S.-W., 2008. Sensitivity of a Sandy Area to Climate Change Along a Rainfall Gradient at a Desert Fringe. In: Breckle, S.-W, Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, Ecol. Stud., No. 200, Springer, Berlin Heidelberg New York, pp. 425–440.Google Scholar

  • Yair, A., Almog, R., Veste, M., 2011. Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert, Israel. Catena, 87, 3, 326–333.CrossrefGoogle Scholar

About the article

Received: 2015-07-06

Accepted: 2015-11-12

Published Online: 2016-01-26

Published in Print: 2016-03-01

Citation Information: Journal of Hydrology and Hydromechanics, Volume 64, Issue 1, Pages 1–11, ISSN (Online) 0042-790X, DOI: https://doi.org/10.1515/johh-2016-0009.

Export Citation

© 2016 Stella Gypser et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

James C. Lendemer
The Bryologist, 2016, Volume 119, Number 3, Page 316
Paul D. Hallett, Giora J. Kidron, Radka Kodešová, and Ľubomír Lichner
Journal of Hydrology and Hydromechanics, 2016, Volume 64, Number 2
Stella Gypser, Werner B. Herppich, Thomas Fischer, Philipp Lange, and Maik Veste
Flora - Morphology, Distribution, Functional Ecology of Plants, 2016, Volume 220, Page 103

Comments (0)

Please log in or register to comment.
Log in