Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 64, Issue 3


Interpretation of ponded infiltration data using numerical experiments

Michal Dohnal
  • Corresponding author
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomas Vogel
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaromir Dusek
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Votrubova
  • Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Tesar
  • Institute of Hydrodynamics of the Academy of Sciences of the Czech Republic, Pod Paťankou 5, Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-08 | DOI: https://doi.org/10.1515/johh-2016-0020


Ponded infiltration experiment is a simple test used for in-situ determination of soil hydraulic properties, particularly saturated hydraulic conductivity and sorptivity. It is known that infiltration process in natural soils is strongly affected by presence of macropores, soil layering, initial and experimental conditions etc. As a result, infiltration record encompasses a complex of mutually compensating effects that are difficult to separate from each other. Determination of sorptivity and saturated hydraulic conductivity from such infiltration data is complicated. In the present study we use numerical simulation to examine the impact of selected experimental conditions and soil profile properties on the ponded infiltration experiment results, specifically in terms of the hydraulic conductivity and sorptivity evaluation. The effect of following factors was considered: depth of ponding, ring insertion depth, initial soil water content, presence of preferential pathways, hydraulic conductivity anisotropy, soil layering, surface layer retention capacity and hydraulic conductivity, and presence of soil pipes or stones under the infiltration ring. Results were compared with a large database of infiltration curves measured at the experimental site Liz (Bohemian Forest, Czech Republic). Reasonably good agreement between simulated and observed infiltration curves was achieved by combining several of factors tested. Moreover, the ring insertion effect was recognized as one of the major causes of uncertainty in the determination of soil hydraulic parameters.

Keywords: Ponded infiltration experiment; Two-parameter infiltration equation; Three-dimensional axisymmetric dualcontinuum model; Preferential flow


  • ASTM Standard D3385-09, 2009. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. West Conshohocken, PA, www.astm.org.Google Scholar

  • Bagarello, V, Iovino, M., Lai, J., 2013. Field and numerical tests of the two ponding depth procedure for analysis of single- ring pressure infiltrometer data. Pedosphere, 2, 779-789.CrossrefGoogle Scholar

  • Cislerova, M., Šimůnek, J., Vogel, T., 1988. Changes of steadystate infiltration rates in recurrent ponding infiltration experiments. J. Hydrol., 104, 1-16.CrossrefGoogle Scholar

  • Dohnal, M., Dušek, J., Vogel, T., Císlerová, M., Lichner, Ľ., Štekauerová, V., 2009. Ponded infiltration into soil with biopores - field experiment and modeling. Biologia, 64, 580-584.CrossrefWeb of ScienceGoogle Scholar

  • Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J., 74, 804-811.CrossrefWeb of ScienceGoogle Scholar

  • Dohnal, M., Jelinková, V., Snehota, M., Dusek, J., Brezina, J., 2013. Three-dimensional numerical analysis of water flow affected by entrapped air: application of noninvasive imaging techniques. Vadose Zone J., 12, 1, DOI: 10.2136/vzj2012.0078Web of ScienceCrossrefGoogle Scholar

  • Dusek, J., Dohnal, M., Vogel, T., 2009. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil & Water Res., 4, S22-S27.Google Scholar

  • Ganz, Ch., Bachmann, J., Noell, U. et al., 2014. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone J., 13, 1, DOI:10.2136/vzj2013.04.0074Web of ScienceCrossrefGoogle Scholar

  • Gerke, H.H., van Genuchten, M.Th., 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res., 29, 305-319.CrossrefGoogle Scholar

  • Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.-Y., 1994. Three dimensional analysis of infiltration from the disc infiltrometer: 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931-2935.CrossrefGoogle Scholar

  • Hillel, D., 1998. Environmental Soil Physics. Elsevier Academic Press, San Diego, CA, USA.Google Scholar

  • Hogarth, W.L., Lockington, D.A., Barry, D.A., Parlange, M.B., Haverkamp, R., Parlange, J.Y., 2013. Infiltration in soils with a saturated surface. Water Resour. Res., 49, 5, 2683-2688.CrossrefWeb of ScienceGoogle Scholar

  • Johnson, A.I., 1963. A field method for measurement of infiltration. General ground-water techniques. Geological Survey Water-Supply Paper 1544-f.Google Scholar

  • Miller, E.E., Klute, A., 1967. The dynamics of soil water. Part I - mechanical forces. In: Hagan, R.M., Haise, H.R, Edminster, T.W. (Eds.): Irrigation of Agricultural Lands. Am. Soc. Agron., Madison, WI, USA, pp. 209-244.Google Scholar

  • Mirus, B.B., Perkins, K.S., Nimmo, J.R., Singha, K., 2008. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for effective properties. Vadose Zone J., 8, 496-509.CrossrefWeb of ScienceGoogle Scholar

  • Nakhaei, M., Šimůnek, J., 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62, 1, 7-15.Web of ScienceGoogle Scholar

  • Nimmo, J.R., 2012. Preferential flow occurs in unsaturated conditions. Hydrol. Process., 26, 786-789.Web of ScienceCrossrefGoogle Scholar

  • Philip, J.R., 1954. Some recent advances in hydrologic physics. J. Inst. Engrs. Australia, 26, 255-259.Google Scholar

  • Philip, J.R., 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257-284.CrossrefGoogle Scholar

  • Šimůnek, J., 1988. Infiltration - numerical simulation. Vodohospodársky Časopis, 36, 407-420. (In Czech.)Google Scholar

  • Smettem, K.R.J., Parlange, J.-Y., Ross, P.J., Haverkamp, R., 1994. Three dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary based theory. Water Resour. Res., 30, 2925-2929.CrossrefGoogle Scholar

  • Smiles, D.E., Knight, J.H., 1976. A note on the use of the Philip infiltration equation. Aust. J. Soil Res., 10, 143-150.Google Scholar

  • Talsma,T., Parlange, J.-Y., 1972. One-dimensional infiltration. Aust. J. Soil Res., 10, 143-150.CrossrefGoogle Scholar

  • Turner, N.C., Parlange, J.-Y., 1974. Lateral movement at the periphery of a one-dimensional flow of water. Soil Sci., 118, 70-77.CrossrefGoogle Scholar

  • Vandervaere, J.-P., Peugeot, C., Vauclin, M., Angulo-Jaramillo, R., Lebel, T., 1997. Estimating hydraulic conductivity of crusted soils using disc infiltrometers and minitensiometers. J. Hydrol., 188-189, 203-223.Google Scholar

  • van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.CrossrefGoogle Scholar

  • Vogel, T., Gerke, H.H., Zhang, R., van Genuchten, M.Th., 2000. Modelling flow and transport in a two dimensional dual-permeability system with spatially variable hydraulic properties. J. Hydrol., 238, 78-89.Google Scholar

  • Vogel, T., van Genuchten, M.Th., Císlerová, M., 2001. Effect of the shape of soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24, 133-144.Google Scholar

  • Votrubova, J., Jelinkova, V., Nemcova, R., Tesar, M., Vogel, T., Cislerova, M., 2010. The soil apparent infiltrability observed with ponded infiltration experiment in a permanent grid of infiltration rings. Geophysical Research Abstracts, Vol. 12, EGU2010-11898.Google Scholar

  • Votrubova, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil & Water Res., 7, 125-137.Google Scholar

  • Wang D., Feyen J., van Genuchten, M.Th., Nielsen, D.R., 1998. Air entrapment effects on infiltration rate and flow instability. Water Resour. Res., 34, 213-222.CrossrefGoogle Scholar

  • Wang, C., Mao, X., Hatano, R., 2014. Modeling ponded infiltration in fine textured soils with coarse interlayer. Soil Sci. Soc. Am. J., 78, 745-753.CrossrefWeb of ScienceGoogle Scholar

  • White, I., Sully, M., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res., 23, 1514-1522.CrossrefGoogle Scholar

  • Zhang, R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024-1030.CrossrefGoogle Scholar

About the article

Received: 2015-11-25

Accepted: 2016-03-02

Published Online: 2016-07-08

Published in Print: 2016-09-01

Citation Information: Journal of Hydrology and Hydromechanics, Volume 64, Issue 3, Pages 289–299, ISSN (Online) 0042-790X, DOI: https://doi.org/10.1515/johh-2016-0020.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in