Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year

IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
See all formats and pricing
More options …
Volume 65, Issue 1


Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles

Nasrollah Sepehrnia
  • Corresponding author
  • Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran (Islamic Republic of)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Ali Hajabbasi
  • Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Majid Afyuni
  • Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ľubomír Lichner
  • Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-08 | DOI: https://doi.org/10.1515/johh-2016-0055


This study explored the effect of soil water repellency (SWR) on soil hydrophysical properties with depth. Soils were sampled from two distinctly wettable and water repellent soil profiles at depth increments from 0-60 cm. The soils were selected because they appeared to either wet readily (wettable) or remain dry (water repellent) under field conditions. Basic soil properties (MWD, SOM, θv) were compared to hydrophysical properties (Ks, Sw, Se, Sww, Swh, WDPT, RIc, RIm and WRCT) that characterise or are affected by water repellency. Our results showed both soil and depth affected basic and hydrophysical properties of the soils (p <0.001). Soil organic matter (SOM) was the major property responsible for water repellency at the selected depths (0-60). Water repellency changes affected moisture distribution and resulted in the upper layer (0-40 cm) of the repellent soil to be considerably drier compared to the wettable soil. The water repellent soil also had greater MWDdry and Ks over the entire 0-60 cm depth compared to the wettable soil. Various measures of sorptivity, Sw, Se, Sww, Swh, were greater through the wettable than water repellent soil profile, which was also reflected in field and dry WDPT measurements. However, the wettable soil had subcritical water repellency, so the range of data was used to compare indices of water repellency. WRCT and RIm had less variation compared to WDPT and RIc. Estimating water repellency using WRCT and RIm indicated that these indices can detect the degree of SWR and are able to better classify SWR degree of the subcritical-repellent soil from the wettable soil.

Keywords: Soil property; Soil organic matter; Aggregate; Bulk density; Mean weight diameter; Infiltration; Water repellency


  • Amezketa, E., 1999. Soil aggregate stability: a review. J. Sustain. Agric., 14, 83-151.CrossrefGoogle Scholar

  • Bachmann, J., Deurer, M., Arye, G., 2007. Water-repellent soil: 1. Development of a contact angle-dependent waterretention model. Vadose Zone J., 6, 436-445.CrossrefGoogle Scholar

  • Bachmann, J., Goebel M.-O., Woche S.K., 2013. Small-scale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 61, 3-8.Google Scholar

  • Bauters, T.W.J., Steenhuisa T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W., Ritsema, C.J., Parlange, J.Y., Haverkamp, R. 2000. Physics of water repellent soils. J. Hydrol., 231-232: 233-243.Google Scholar

  • Beatty, S.M., Smith, J.E., 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol, 514: 233-248.Google Scholar

  • Black, G.R., Hartge, K.H., 1986. Bulk density. In: Klute A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. ASA/SSSA Monograph 9(1), Madison, WI, USA, pp. 374-380.Google Scholar

  • Chaudhari, P.R., Ahire, D.V., Ahire, V.D., Chkravarty, M., Maity, S., 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3, 1-8.Google Scholar

  • Chenu, C., Le Bissonnais, Y., Arrouays, D., 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J., 64, 1479-1486.CrossrefGoogle Scholar

  • Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. J. Hydrol., 231-232, 255-264.Google Scholar

  • Cosentino, D., Hallett, P.D., Michel, J.C., Chenu, C., 2010. Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma, 159, 221-227.Google Scholar

  • Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: potential and actual water repellency. Water Resour. Res., 30, 2507-2517.CrossrefGoogle Scholar

  • Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil. Sci. Soc. Am. J., 65, 1667-1674.CrossrefGoogle Scholar

  • Diehl, D., Schneckenburger, T., Krüger, J., Goebel, M.-O., Woche, S.K., Schwarz, J., Shchegolikhina, A., Lang, F., Marschner, B., Thiele-Bruhn, S., Bachmann, J., Schaumann, G.E., 2014. Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environ. Chem., 11, 709-718.CrossrefGoogle Scholar

  • Doerr, S.H., Shakesby, R.A.,Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Science Reviews, 51, 33-65.CrossrefGoogle Scholar

  • Doerr, S.H., Ritsema, C.J., Dekker, L.W., Scott, D.F., Carter, D., 2007. Water repellence of soils: new insights and emerging research needs. Hydrol. Process., 21, 2223-2228.CrossrefGoogle Scholar

  • Eusufzai, M.K., Fujii, K., 2012. Effect of organic matter amendment on hydraulic and pore characteristics of a clay loam soil. Open Journal of Soil Science, 2, 372-381.CrossrefGoogle Scholar

  • Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 80-93.CrossrefGoogle Scholar

  • Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Global Change Biol., 17, 2640-2656.CrossrefGoogle Scholar

  • Haghighi, F., Gorji, M., Shorafa, M., 2010. A study of the effects of land use changes on soil physical properties and organic matter. Land Degrad. Develop., 21, 496-502.Google Scholar

  • Hallett, P.D., 2008. A brief overview of the causes, impacts and amelioration of soil water repellency - a review. Soil and Water Research, 3, S21-S29.Google Scholar

  • Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184-190.CrossrefGoogle Scholar

  • Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, nearsaturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143, 223-230.Google Scholar

  • Johnson, M.S., Lehmann, J., Steenhuis, T.S., Oliveira, L.V., Fernandes, E.C.M., 2005. Spatial and temporal variability of soil water repellency of Amazonian pastures. Aust. J. Soil Res., 43, 319-326.CrossrefGoogle Scholar

  • Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N., 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 136-147.CrossrefGoogle Scholar

  • Keizer, J.J., Doerr, S.H., Malvar, M.C., Ferreira, A.J.D., Pereira, V.M.F.G., 2007. Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal. Hydrol. Process., 21, 2317-2324.CrossrefGoogle Scholar

  • Kemper, W.D., Chepil, W.S. 1965. Size distribution of aggregates. In: Black, C.A. (Ed.): Methods of Soil Analysis, Part I. American Society of Agronomy, Madison, WI, pp. 499-510.Google Scholar

  • Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. ASA/SSSA Monograph 9(1), Madison, WI, pp. 687-732.Google Scholar

  • Kodešová, R., Rohošková, M., Žigová, A., 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64, 550-554.CrossrefGoogle Scholar

  • Lal, R., 2011. Organic matter, effects on soil physical properties and processes. In: Glinski J., Horabik J., Lipiec J. (Eds.): Encyclopedia of Agrophysics. Springer, Dordrecht, pp. 528-534.Google Scholar

  • Lamparter, A., Bachmann, J., Deurer, M., Woche, S.K., 2010. Applicability of ethanol for measuring intrinsic hydraulic properties of sand with various water repellency level. Vadose Zone J., 9, 445-450.CrossrefGoogle Scholar

  • Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil. Sci., 47, 425-443.CrossrefGoogle Scholar

  • Leelamanie, D.A.L., 2014. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka. J. Hydrol. Hydromech., 62, 309-315.Google Scholar

  • Lichner, Ľ., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plant and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 309-318.Google Scholar

  • Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence hydrophysical parameters of a sandy soil. Catena, 108, 58-68.CrossrefGoogle Scholar

  • Madsen, M.D., Zvirzdin, D.L., Petersen, S.L., Hopkins, B.G., Roundy B.A., Chandler, D.G., 2011. Soil water repellency within a burned piñon-juniper woodland: spatial distribution, severity, and ecohydrologic implications. Soil Sci. Soc. Am. J., 75, 1543-1553.CrossrefGoogle Scholar

  • Müller, M., Deurer, M., 2011. Review of the remediation strategies for soil water repellency. Agric. Ecosyst. Environ., 144, 208-221.CrossrefGoogle Scholar

  • Nesper, M., Bünemann, E.K., Fonte, S.J., Rao, I.M., Velásquez, J.E., Ramirez, B., Hegglin, D., Frossard, E., Oberson, A., 2015. Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma, 257-258, 123-133.Google Scholar

  • Orfánus, T., Bedrna, Z., Lichner, L., Hallett, P.D., Kňava, K., Sebíň, M., 2008. Spatial variability of water repellency in pine forest soil. Soil & Water Res., 3, Special Issue 1, S123- S129.Google Scholar

  • Orfánus, T., Dlapa, P., Fodor, N., Rajkai, K., Sándor, R., Nováková, K., 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil & Tillage Research, 135, 49-59.Google Scholar

  • Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 1450-1455.CrossrefGoogle Scholar

  • SAS Institute, 2004. SAS User’s Guide: Statistics. Ver. 9. SAS Institute Inc., Cary, N.C.Google Scholar

  • Sepehrnia, N., Mahboubi, A.A., Mosaddeghi, M.R., Safari Sinejani, A.A., Khodakaramian, G., 2014. Escherichia coli transport through intact gypsiferous and calcareous soils during saturated and unsaturated flows. Geoderma, 217-218, 83-89.Google Scholar

  • Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, Ľ., 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71, 10, 1137-1143.CrossrefGoogle Scholar

  • Shaver, T., 2010. Crop residue and soil physical properties. In: Proc. 22nd Annual Central Plains Irrigation Conference, Kearney, NE, USA, pp. 22-27.Google Scholar

  • Soil Survey Division Staff, 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 p.Google Scholar

  • Täumer, K., Stoffregen, H., Wessolek, G., 2005. Determination of repellency distribution using soil organic matter and water content. Geoderma, 125, 107-115.CrossrefGoogle Scholar

  • Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 637-644.CrossrefGoogle Scholar

  • Urbanek, E., Horn, R., Smucker, A.J.M., 2014. Tensile and erosive strength of soil macro-aggregates from soils under different management system. J. Hydrol. Hydromech., 62, 324-333.Google Scholar

  • Vogelmann, E.S., Reichert, J.M., Prevedello J., Awe G.O., Mataix-Solera, J., 2013. Can occurrence of soil hydrophobicity promote the increase of aggregates stability? Catena, 110, 24-31.Google Scholar

  • Walkly, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.CrossrefGoogle Scholar

  • Wallis, M.G., Horne, D.J., 1992. Soil water repellency. In: Stewart B.A. (Ed.): Advances in Soil Science, Vol. 20. Springer, New York, pp. 91-146.Google Scholar

  • WRB, 2014. World Reference Base for Soil Resources 2014. 2nd edition. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar

  • Zamani, J., Afyunia, M., Sepehrnia, N., Schulin, R., 2016. Opposite effects of two organic wastes on the physical quality of an agricultural soil. Arch. Agron. Soil Sci., 62, 3, 413-427. CrossrefGoogle Scholar

About the article

Received: 2015-09-18

Accepted: 2016-07-27

Published Online: 2016-12-08

Published in Print: 2017-03-01

Citation Information: Journal of Hydrology and Hydromechanics, Volume 65, Issue 1, Pages 99–104, ISSN (Online) 0042-790X, DOI: https://doi.org/10.1515/johh-2016-0055.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in