Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

4 Issues per year


IMPACT FACTOR 2016: 1.654

CiteScore 2016: 1.72

SCImago Journal Rank (SJR) 2016: 0.440
Source Normalized Impact per Paper (SNIP) 2016: 0.969

Open Access
Online
ISSN
0042-790X
See all formats and pricing
More options …
Volume 65, Issue 3

Issues

Isothermal and non-isothermal infiltration and deuterium transport: a case study in a soil column from a headwater catchment

Martina Sobotková
  • Corresponding author
  • Czech Technical University in Prague, Faculty of Civil Engineering, Department of Drainage and Landscape Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Sněhota
  • Czech Technical University in Prague, Faculty of Civil Engineering, Department of Drainage and Landscape Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic.
  • Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštěhrad, 273 43, Czech Republic.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Budínová
  • Czech Technical University in Prague, Faculty of Civil Engineering, Department of Drainage and Landscape Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Tesař
  • Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Paťankou 30/5, 166 12 Prague 6, Czech Republic.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-22 | DOI: https://doi.org/10.1515/johh-2017-0029

Abstract

Isothermal and non-isothermal infiltration experiments with tracer breakthrough were carried out in the laboratory on one intact column (18.9 cm in diameter, 25 cm in height) of sandy loam soil. For the isothermal experiment, the temperature of the infiltrating water was 20°C to the initial temperature of the sample. For the two non-isothermal experiments water temperature was set at 8°C and 6°C, while the initial temperature of the sample was 22°C. The experiments were conducted under the same initial and boundary conditions. Pressure heads and temperatures were monitored in two depths (8.8 and 15.3 cm) inside the soil sample. Two additional temperature sensors monitored the entering and leaving temperatures of the water. Water drained freely through the perforated plate at the bottom of the sample by gravity and outflow was measured using a tipping bucket flowmeter. The permeability of the sample calculated for steady state stages of the experiment showed that the significant difference between water flow rates recorded during the two experiments could not only be justified by temperature induced changes of the water viscosity and density. The observed data points of the breakthrough curve were successfully fitted using the two-region physical non-equilibrium model. The results of the breakthrough curves showed similar asymmetric shapes under isothermal and non-isothermal conditions.

Keywords: Isothermal infiltration; Non-isothermal infiltration; Column leaching; Breakthrough curve; Deuterium; Viscosity; Capillary trapping; Entrapped air; Permeability

REFERENCES

  • Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer.Google Scholar

  • Braga, A., Horst, M., Traver, R.G., 2007. Temperature effects on the infiltration rate through an infiltration basin BMP. Journal of Irrigation and Drainage ASCE, 133, 6, 593–601.Web of ScienceGoogle Scholar

  • Buchner, J.S., Simunek, J., Lee, J., Rolston, D.E., Hopmans, J.W., King, A.P., Six, J., 2008. Evaluation of CO2 fluxes from an agricultural field using a process based numerical model. Journal of Hydrology, 3, 61, 131–143.Web of ScienceGoogle Scholar

  • Císlerová, M., Šimůnek, J., Vogel, T., 1988. Changes of steady-state infiltration rates in recurrent ponding infiltration experiments. Journal of Hydrology, 104, 1–4, 1–16.Google Scholar

  • Constanz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Science Society of America Journal, 46, 466–470.CrossrefGoogle Scholar

  • Constanz, J., Murphy, F., 1991. The temperature dependence of ponded infiltration under isothermal conditions. Journal of Hydrology, 122, 1–4, 119–128. DOI: 10.1016/0022-1694(91)90175-H.CrossrefGoogle Scholar

  • Dohnal, M., Dušek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Science Society of America Journal, 74, 3, 804–811. DOI: 10.2136/sssaj2009.0099.CrossrefWeb of ScienceGoogle Scholar

  • Dohnal, M., Jelínková, V., Sněhota, M., Dušek, J., Březina J., 2013. Three-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone Journal, 12, 1, vzj2012.0078. DOI: 10.2136/vzj2012.0078.CrossrefGoogle Scholar

  • Duley, F.L., Domingo, C.E., 1943. Effect of water temperature on rate of infiltration. Soil Science Society Proceedings, 8, 129–131.Google Scholar

  • Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air - laboratory experiments. Water Resources Research 31, 10, 2421–2435.CrossrefGoogle Scholar

  • Fučík, R., Klinkovský, J., Solovský, J., Oberhuber, T., Mikyška, J., 2017. Multidimensional mixed-hybrid finite element method for compositional two-phase flow in heterogeneous porous media and its parallel implementation on GPU. Computer Physics Communications (in the review process).Google Scholar

  • Gerke, H.H., Koszinski, S., Kalettka, T., Sommer, M., 2010. Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. Journal of Hydrology 393, 1–2, 123–132.Web of ScienceGoogle Scholar

  • Gerla, P.J., 1992. The relationship of water-table changes to the capillary-fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands, 12, 2, 91–98.Google Scholar

  • Haberer, C.M., Rolle, M., Liu, S., Cirpka, O.A., Grathwohl, P., 2011. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. Journal of Contaminant Hydrology, 122, 1–4, 26–39.CrossrefWeb of ScienceGoogle Scholar

  • Haridasan, M., Jensen, R.D., 1972. Effect of temperature on pressure, head-water content relationship and conductivity of two soils. Soil Science Society of America Journal, 36, 5, 703–708. DOI: 10.2136/sssaj1972.03615995003600050011x.CrossrefGoogle Scholar

  • Hillel, D., 1998. Environmental Soil Physics. Academic Press. 771 p.Google Scholar

  • Hopmans, J.W., Dane, J.H., 1986. Temperature dependence of soil hydraulic properties. Soil Science Society of America Journal, 50, 4–9.Google Scholar

  • Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Science Society of America Journal, 54, 305–312. DOI: 10.2136/sssaj1990.03615995005400020002x.CrossrefGoogle Scholar

  • Jury, W.A., Horton, R., 2004. Soil Physics. 6th ed. J. Wiley, Hoboken, NJ.Google Scholar

  • Kestin, J., Khalifam H.E., Correia, R.J., 1981. Tables of the dynamic and kinematic viscosity of aqueous KCl solutions in the temperature range 25 – 150°c and the pressure range 0.1 – 35 MPa. J. Phys. Chem. Ref. Data, 10, 1.Google Scholar

  • Koestel, J., Jorda, H., 2014. What determines the strength of preferential transport in undisturbed soil under steady-state flow? Geoderma, 217, 144–160. DOI: 10.1016/j.geoderma.2013.11.009.Web of ScienceCrossrefGoogle Scholar

  • Köhne, J.M., Köhne, S., Mohanty, B.P., Šimůnek, J., 2004. Inverse mobile–immobile modeling of transport during transient flow. Vadose Zone Journal, 3, 4, 1309–1321.Google Scholar

  • Larsbo, M., Koestel, J., Jarvis, N., 2014. Relations between macropore network characteristics and the degree of preferential solute transport. Hydrology and Earth System Sciences, 18, 12, 5255–5269. DOI: 10.5194/hess-18-5255-2014.CrossrefWeb of ScienceGoogle Scholar

  • Levy, G.J., Smith, H.J.C., Agassi, M., 1989. Water temperature effect on hydraulic conductivity and infiltration rate of soils. South African Journal of Plant and Soil, 6, 4, 240–244. DOI: 10.1080/02571862.1989.10634520.CrossrefGoogle Scholar

  • Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Science Society of America Journal, 67, 487–493. DOI: 10.2136/sssaj2003.4870.CrossrefGoogle Scholar

  • Nielsen, D.R., van Genuchten, M.T., Biggar, J.W., 1986. Water flow and solute transport processes in the unsaturated zone. Water Resources Research, 22, 89S–108S.Google Scholar

  • Nielsen, P., Aseervatham, R., Fenton, J.D., Perrochet, P., 1997. Groundwater waves in aquifers of intermediate depths. Advances in Water Resources, 20, 1, 37–43.Google Scholar

  • Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T.A., Gobbi, A., Borga, M., Fischer, B.M.C., Bonazza, M., Chárová, Z., 2010. On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrology and Earth System Science, 14, 1551–1566.Google Scholar

  • Saha, R.S., Tripathi, R.P., 1979. Effect of temperature on hydraulic conductivity of soil. Journal of the Indian Society of Soil Science, 27, 3, 220–224.Google Scholar

  • Saito, H., Šimůnek, J., Mohanty, B.P., 2006. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J., 5, 784–800.CrossrefGoogle Scholar

  • Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J., Císlerová, M., 2014. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrological Processes, 28, 8, 3217–3229.Web of ScienceGoogle Scholar

  • Silliman, S.E., Berkowitz, B., Simunek, J., van Genuchten, M.T., 2002. Fluid flow and solute migration within the capillary fringe. Ground Water, 40, 1, 76–84.CrossrefGoogle Scholar

  • Simunek, J., van Genuchten, M.Th., Sejna, M., Toride, N. Leij, F.J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC - TPS - 71, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 32 p.Google Scholar

  • Snehota, M., Sobotkova, M., Cislerova, M., 2008. Impact of the entrapped air on water flow and solute transport in heterogeneous soil: experimental set-up. Journal of Hydrology and Hydromechanics, 56, 4, 247–256.Google Scholar

  • Sněhota, M., Jelínková, V., Sobotková, M., Šácha, J., Vontobel, P., Hovind, J., 2015. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process. 51, 1359–1371. DOI: 10.1002/2014WR015432.CrossrefWeb of ScienceGoogle Scholar

  • Sobotkova, M., Snehota, M., 2014. Method of in-line bromide breakthrough curve measurements for column leaching experiments. Vadose Zone Journal, 13, 8. DOI: 10.2136/vzj2013.11.0192.CrossrefWeb of ScienceGoogle Scholar

  • Tesař, M., Šír, M., Lichner, Ľ., Zelenková, E., 2006. Influence of vegetation cover on thermal regime of mountainous catchments. Biologia, 61, Suppl. 19, S311-S314.Google Scholar

  • Tesař, M., Šír, M., Krejča, M., Váchal, J., 2008. Influence of vegetation cover on air and soil temperatures in the Šumava Mts. (Czech Republic). IOP Conference Series: Earth and Environmental Science, 4, 012029. DOI: 10.1088/1755-1307/4/1/012029.CrossrefGoogle Scholar

  • Toride, N., Leij, F.J., van Genuchten, M.T., 1995. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0, Research Report No. 137, U. S. Salinity Laboratory, USDA, ARS, Riverside, CA.Google Scholar

  • Ungureanu, A., Statescu, F., Sněhota, M., Sobotková, M., 2012. Experimental research on flow and solute transport in heterogeneous soil sample. Environmental Engineering and Management Journal, 11, 5, 1023–1028.Google Scholar

  • van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.Google Scholar

  • van Genuchten, M.T., 1981. Non-equilibrium transport parameters from miscible displacement experiments. Research Report No. 119, U.S. Salinity Laboratory, USDA, ARS, Riverside, CA.Google Scholar

  • van Genuchten, M.T., Leij, F.J., Yates, S.R., Williams, J.R., 1991. The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils. EPA/600/2-91/065, U.S. Salinity Laboratory, Riverside, California. IAG-DW12933934.Google Scholar

  • van Genuchten, M.T., Šimůnek, J., Leij, F.L., Toride, N., Šejna, M., 2012. STANMOD: Model use, calibration and validation. Transactions of the ASABE, 5, 4, 1353–1366.Google Scholar

  • Vogel, T., Dohnal, M., Votrubová, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. Journal of Hydrology, 402, 4, 367–376. ISSN 0022-1694.Google Scholar

  • Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil and Water Research, 7, 4, 125–137.Google Scholar

About the article

Received: 2016-08-15

Accepted: 2017-05-13

Published Online: 2017-07-22

Published in Print: 2017-09-01


Citation Information: Journal of Hydrology and Hydromechanics, Volume 65, Issue 3, Pages 234–243, ISSN (Online) 0042-790X, DOI: https://doi.org/10.1515/johh-2017-0029.

Export Citation

© 2017 Martina Sobotková et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in