Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Medical Biochemistry

The Journal of Society of Medical Biochemists of Serbia

4 Issues per year


IMPACT FACTOR 2016: 1.148

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.279
Source Normalized Impact per Paper (SNIP) 2016: 0.488

Open Access
Online
ISSN
1452-8266
See all formats and pricing
More options …
Volume 30, Issue 1

Issues

Impact of Coexposure to Aluminum and Ethanol on Phosphoesterases and Transaminases of Rat Cerebrum

Prasunpriya Nayak
  • Department of Physiology, NRI Medical College & General Hospital, Chinna Kakani, Mangalagiri (Md), Guntur (Dt), India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shiv Sharma / Nadella Chowdary
  • Department of Physiology, NRI Medical College & General Hospital, Chinna Kakani, Mangalagiri (Md), Guntur (Dt), India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-11-25 | DOI: https://doi.org/10.2478/v10011-010-0049-0

Impact of Coexposure to Aluminum and Ethanol on Phosphoesterases and Transaminases of Rat Cerebrum

Ubiquitous presence along with uncontrolled use of aluminum and increasing trends of ethanol consumption in India increased the chance of coexposure to aluminum and ethanol. Possibilities are there, that both of them follow common mechanisms to produce neurotoxicity. The phosphomonoesterases and glutamate transaminases are studied in rat brain cerebrum after combined exposure to aluminum and varied doses of ethanol for 4 weeks. Dose dependent decreases in growth have been observed. The impact of aluminum on cerebral acidic and alkaline phosphomonoesterases activities were shown to be altered in a dose dependent fashion by the coexposure to ethanol. Aspartate aminotransferase and alanine aminotransferase of the cerebrum were responding differentially to aluminum exposure in the presence of different doses of ethanol exposure. It has been suggested that the ethanol-induced augmentation of impacts of aluminum on the cerebrum is dose dependent and there might be a critical level of ethanol exposure for the observed effect on cerebrum.

Uticaj Dvostruke Izloženosti Aluminijumu i Etanolu na Fosfoesteraze i Transaminaze u Mozgu Pacova

Sveprisutnost aluminijuma uz njegovu nekontrolisanu upotrebu kao i trend sve veće konzumacije etanola u Indiji povećali su mogućnost dvostruke izloženosti aluminijumu i etanolu. Moguće je da oba prate zajedničke mehanizme u proizvodnji neurotoksičnosti. Fosfomonoesteraze i glutamat-transaminaze ispitivane su u velikom mozgu pacova posle kombinovane izloženosti aluminijumu i različitim dozama etanola tokom 4 nedelje. Uočena su smanjenja rasta zavisna od doze. Pokazano je da se uticaj aluminijuma na aktivnosti moždane kisele i alkalne fosfomonoesteraze menja u zavisnosti od doze usled dvostruke izloženosti etanolu. Aspartat-aminotransferaza i alanin-aminotransferaza u velikom mozgu davale su različit odgovor na izloženost aluminijumu u prisustvu različitih doza izloženosti etanolu. Pokazano je da pojačanje uticaja aluminijuma na mozak izazvano etanolom zavisi od doze i da za opaženi efekat na mozak može postojati kritičan nivo izloženosti etanolu.

Keywords: aluminum; ethanol; cerebrum; phosphomonoesterase; transaminase

Keywords: aluminijum; etanol; veliki mozak; fosfomonoesteraza; transaminaza

  • Nayak P. Aluminum: Impacts, Disease. Enviorn Res Sec A 2002; 89: 111-15.Google Scholar

  • Miu AC, Benga O. Aluminum, Alzheimer's disease: A new look. J Alzheimer Dis 2006; 10: 179-201.Google Scholar

  • Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuro-protective role of Covolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol 2009; 124: 409-15.Google Scholar

  • Walton JR. Brain lesion comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease. Neurotoxicology 2009; 30: 1059-69.Web of ScienceCrossrefGoogle Scholar

  • WHO. Surveys of drinking patterns, problems in seven developing countries. WHO/MSD/MSB/ 01.2. 2001; p 103-114.Google Scholar

  • Benegal V Velayudhan A, Jain S. Social Costs of Alcoholism: A Karnataka Perspective. NIMHANS J 2000; 18: 67.Google Scholar

  • Dhatrak SV, Nandi SS. Risk assessment of chronic poisoning among Indian metallic miners. Ind J Occup Environ Med 2009; 13: 60-4.CrossrefGoogle Scholar

  • Davis WM. Is aluminum an etiologic contributor to alcoholic amnesia, dementia? Med Hypotheses 1993; 41: 341-3.CrossrefPubMedGoogle Scholar

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, et al. Human health risk assessment for aluminium, aluminium oxide, aluminium hydroxide. J Toxicol Environ Health B Crit Rev 2007; 10 (Suppl 1): 1-269.Google Scholar

  • Nayak P, Chatterjee AK. Impact of protein malnutrition on subcellular nucleic acid, protein status of brain of aluminum-exposed rats. J Toxicol Sci 1998; 23: 1-14.PubMedCrossrefGoogle Scholar

  • Nayak P, Chatterjee AK. Differential responses of certain brain phosphoesterases to aluminum in dietary protein adequacy or inadequacy. Food Chem Toxicol 2001; 39: 587-92.Google Scholar

  • Nayak P, Chatterjee AK. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition. BMC Neurosci 2002; 3: 12.PubMedCrossrefGoogle Scholar

  • Diamond I, Gordon AS. Cellular, molecular neuroscience of alcoholism. Physiol Rev 1997; 77: 1-20.Google Scholar

  • Rajasekaran K. Effects of combined exposure to aluminium, ethanol on food intake, motor behaviour, a few biochemical parameters in pubertal rats. Environ Toxicol Pharmacol 2000; 9: 25-30.PubMedCrossrefGoogle Scholar

  • Das SK, Hiran KR, Mukherjee S, Vasudevan DM. Oxidative stress is the primary event: Effects of ethanol consumption in brain. Ind J Clin Biochem 2007; 22: 99-104.CrossrefGoogle Scholar

  • Bharathi, Vadudevaraju P, Govindraju M, Plaanisamy AP, Sambamurti K, Rao KSJ. Molecular toxicity of aluminium in relation to neurodegeneration. Ind J Med Res 2008; 128: 545-56.Google Scholar

  • Strong MJ, Jakowec DM. 200kDa, 160kDa neurofilament protein phosphatase resistance following in vivo aluminum chloride exposure. Neurotoxicology 1994; 15: 799-808.PubMedGoogle Scholar

  • Ochmanski W, Barabasz W. Aluminum occurrence, toxicity for organisms. [Abstract from PubMed]. Przegl Lek 2000; 57: 665-8.Google Scholar

  • Sallam SMA, Nasser MEA, Yousef MSH, El-Morsy AM, Mahmoud SAS, Yousef MI. Influence of Aluminum Chloride, Ascorbic Acid on Performance, Digestibility, Caecal Microbial Activity, Biochemical Parameters of Rabbits. Res J Agri Biol Sci 2005; 1: 10-16.Google Scholar

  • Galle P. The toxicity of aluminum. World Scientist 1987; 13: 26-35.Google Scholar

  • Karlik SJ, Eichorn GL, Crapper McLachlan DR. Molecular interactions of aluminum with DNA. Neuro-toxicology 1980; 1: 83-8.Google Scholar

  • Dasgupta S, Ghosh S. Nicotine induced alterations in brain acid and alkaline phosphatase activities. Ind J Physiol Allied Sci 1993; 47: 200-6.Google Scholar

  • Laske V, Stein B, Muller A, Braunlich H, Fleck C, Linss W. The effect of chronic aluminum loading on lysosomal enzymes in serum and organ homogenates. Methodologic aspect. Pharmazie 1989; 44: 218-21.Google Scholar

  • Suzuki H, Takeda M, Nakamura Y, Tada k, Hariguchi S, Nishimura T. Activities of lysosomal enzymes in rabbit brain with experimental neurofibrillary changes. Neurosci Lett 1988; 89: 234-9.Google Scholar

  • Cohen S. Phosphatases. In: Lajtha A, editor. Handbook of Neurochemistry, Vol. III. Plenum Press, New York, 1970: 87-131.Google Scholar

  • Streecher HJ. Transaminases. In: Lajtha A, editor. Handbook of Neurochemistry, Vol III. Plenum Press, New York, 1970: 173-92.Google Scholar

  • Beal MF, Brovillet E, Jenkins B, Henshaw R, Rosen B, Hyman BT. Age-dependent striatal excitotoxic lesion produced by the endogenous mitochondrial inhibitor malanate. J Neurochem 1993; 61: 1147-50.CrossrefGoogle Scholar

  • Schulz JB, Mathews RT, Henshaw DR, Beal MF. Neuro-protective strategies for treatment of lesions produced by mitochondrial toxins: implication for neurodegenerative diseases. Neuroscience 1996; 71: 1043-8.Google Scholar

  • Llansola M, Minana MD, Montoliu C, Saez R, Carbalan R, Manzo L, Felipo V. Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase, soluble guanylate cyclase, impairs glutamatergic neuro-transmission in rat cerebellum. J Neurochem 1998; 73: 712-8.Google Scholar

  • Toninello A, Clari G, Mancon M, Tognon G, Zatta P. Aluminum as an inducer of the mitochondrial permeability transition. J Biol Inorg Chem 200; 5: 612-23.Google Scholar

  • Favarato M, Zatta PF. Differential aluminum lactate toxicity in rabbits using either aqueous solutions or liposomal suspensions. Toxicol Lett 1993; 66: 133-46.Google Scholar

  • Netopilova M, Haugvicova R, Kubova H, Drsata J, Mares P. Influence of convulsants on rat brain activities of alanine aminotransferase, aspartate aminotransferase. Neurochem Res 2001; 26: 1285-91.CrossrefPubMedGoogle Scholar

  • Sedman GL, Austin L, Langford CJ. Protein turnover in brain during the development of alcohol dependence. Neurosci Lett 1982; 28: 93-9.CrossrefPubMedGoogle Scholar

  • Jarlstedt J. Effect of alcohol and diet on 3H leucine incorporation into brain and liver protein. I. Acute intoxication and vitamin deficiency in rats. J Stud Alcohol 1976; 37: 1178-87.Google Scholar

  • Matthews CC, Zielke HR, Wollack JB, Fishman PS. Enzymatic degradation protects neurons from glutamate excitotoxicity. J Neurochem 2000; 75: 1045-52.Google Scholar

  • Moss DW, Henderson AR. Clinical enzymology. In: Burtis CA, Ashwood ER, editors. Teitz Textbook of Clinical Chemistry, Harcourt Brace, Company Asia Pvt. Ltd., Singapore. 1999: 617-721.Google Scholar

  • Santos F, Chan JC, Yang MS, Savory J, Wills MR. Aluminum deposition in the central nervous system: Preferential accumulation in the hippocampus in weaning rats. Med Biol 1987; 65: 53-5.Google Scholar

About the article


Published Online: 2010-11-25

Published in Print: 2011-01-01


Citation Information: Journal of Medical Biochemistry, Volume 30, Issue 1, Pages 25–32, ISSN (Online) 1452-8266, ISSN (Print) 1452-8258, DOI: https://doi.org/10.2478/v10011-010-0049-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Calvin C. Willhite, Nataliya A. Karyakina, Robert A. Yokel, Nagarajkumar Yenugadhati, Thomas M. Wisniewski, Ian M.F. Arnold, Franco Momoli, and Daniel Krewski
Critical Reviews in Toxicology, 2014, Volume 44, Number sup4, Page 1

Comments (0)

Please log in or register to comment.
Log in