Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Journal of Official Statistics

The Journal of Statistics Sweden

4 Issues per year


IMPACT FACTOR 2016: 0.411
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2015: 0.410
Source Normalized Impact per Paper (SNIP) 2015: 0.810

Open Access
Online
ISSN
2001-7367
See all formats and pricing
In This Section

Evaluation of Generalized Variance Functions in the Analysis of Complex Survey Data

MoonJung Cho
  • Corresponding author
  • U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington, DC 20212, U.S.A
  • Email:
/ John L. Eltinge
  • Corresponding author
  • U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington, DC 20212, U.S.A
  • Email:
/ Julie Gershunskaya
  • Corresponding author
  • U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington, DC 20212, U.S.A
  • Email:
/ Larry Huff
  • Corresponding author
  • U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington, DC 20212, U.S.A
  • Email:
Published Online: 2014-02-14 | DOI: https://doi.org/10.2478/jos-2014-0004

Abstract

Two sets of diagnostics are presented to evaluate the properties of generalized variance functions (GVFs) for a given sample survey. The first set uses test statistics for the coefficients of multiple regression forms of GVF models. The second set uses smoothed estimators of the mean squared error (MSE) of GVF-based variance estimators. The smooth version of the MSE estimator can provide a useful measure of the performance of a GVF estimator, relative to the variance of a standard design-based variance estimator. Some of the proposed methods are applied to sample data from the Current Employment Statistics survey.

Keywords: Complex sample design; degrees of freedom; design-based inference; model-based inference; quarterly census of employment and wages; superpopulation model; U.S. current employment statistics (CES) survey; variance estimator stability

References

  • Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions. New York: Dover Publications, INC.Google Scholar

  • Binder, D.A. (1983). On the Variances of Asymptotically Normal Estimators from Complex Surveys. International Statistical Review, 51, 279-292.Google Scholar

  • Bureau Of Labor Statistics (1997). Employment, Hours, and Earnings from the Establishment Survey, Chapter 2 of BLS Handbook of Methods, U.S. Department of Labor.Google Scholar

  • Butani, S., Stamas, G., and Brick, M. (1997). Sample Redesign for the Current Employment Statistics Survey. JSM Proceedings, Survey Research Methods Section, Alexandria, VA: American Statistical Association, 517-522.Google Scholar

  • Cho, M.J., Eltinge, J.L., Gershunskaya, J., and Huff, L. (2002). Evaluation of the Predictive Precision of Generalized Variance Functions in the Analysis of Complex Survey Data. In JSM Proceedings, Survey Research Methods Section. Alexandria, VA: American Statistical Association, 534-539. Available at: http://www.amstat.org/sections/SRMS/Proceedings/ (accessed September 19, 2013).Google Scholar

  • Cleveland, W.S. and Grosse, E. (1991). Computational Methods for Local Regression. Statistics and Computing, 1, 47-62.Web of ScienceGoogle Scholar

  • Corbeil, R.R. and Searle, S.R. (1976). Restricted Maximum Likelihood (REML) Estimation of Variance Components in the Mixed Model. Technometrics, 18, 31-38.Google Scholar

  • Davidian, M., Carroll, R.J., and Smith, W. (1988). Variance Functions and the Minimum Detectable Concentration in Assays. Biometrika, 75, 549-556. DOI: http://www.dx.doi.org/10.1093/biomet/75.3.549CrossrefGoogle Scholar

  • Draper, N.R. and Smith, H. (1998). Applied Regression Analysis, (Third Edition). New York: Wiley.Google Scholar

  • Eltinge, J.L., Fields, R.C.,Gershunskaya, J.,Getz, P.,Huff, L., Tiller, R., andWaddington,D. (2001). Small Domain Estimation in the Current Employment Statistics Program, Unpublished Background Material for the FESAC Session on Small Domain Estimation at the Bureau of Labor Statistics.Google Scholar

  • Fuller, W.A. (1987). Measurement Error Models. New York: Wiley.Google Scholar

  • Gershunskaya, J. and Lahiri, P. (2005). Variance Estimation for Domains in the U.S. Current Employment Statistics Program. In JSM Proceedings, Survey Research Methods Section, Alexandria, VA: American Statistical Association, 3044-3051. Available at: http://www.amstat.org/sections/SRMS/Proceedings/ (accessed September 19, 2013).Google Scholar

  • Harville, D.A. (1977). Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. Journal of the American Statistical Association, 71, 320-338. DOI: http://www.dx.doi.org/10.1080/01621459.1977.10480998CrossrefGoogle Scholar

  • Johnson, E.G. and King, B.F. (1987). Generalized Variance Functions for a Complex Sample Survey. Journal of Official Statistics, 3, 235-250.Web of ScienceGoogle Scholar

  • Judkins, D.R. (1990). Fay’s Method for Variance Estimation. Journal of Official Statistics, 6, 223-239.Google Scholar

  • Karlberg, F. (2000). Survey Estimation for Highly Skewed Population in the Presence of Zeros. Journal of Official Statistics, 16, 229-241.Google Scholar

  • Kendall, M.G. and Stuart, A. (1968). Advanced Theory of Statistics 3. New York: Hafner Publishing Company.Google Scholar

  • Korn, E.L. and Graubard, B.I. (1990). Simultaneous Testing of Regression Coefficients with Complex Survey Data: Use of Bonferroni t Statistics. The American Statistician, 44, 270-276.Google Scholar

  • O’Malley, A.J. and Zaslavsky, A.M. (2005). Variance-Covariance Functions for Domain Means of Ordinal Survey Items. Survey Methodology, 31, 169-182. Google Scholar

  • Patterson, H.D. and Thompson, R. (1971). Recovery of Inter-Block Information When Block Sizes Are Unequal. Biometrika, 58, 545-554.Google Scholar

  • Satterthwaite, F.E. (1946). An Approximate Distribution of Estimates of Variance Components. Biometrics Bulletin, 2, 110-114.Google Scholar

  • Skinner, C.J. (1986). Design Effects in Two-Stage Sampling. Journal of Royal Statistical Society, Series B, 48, 89-99.Google Scholar

  • U.S. Bureau Of Labor Statistics (2006). Employment & Earnings, U.S. Department of Labor, 53(8).Google Scholar

  • U.S. Bureau Of Labor Statistics (2011). Employment, Hours, and Earnings from the Establishment Survey, Chapter 2 of BLS Handbook of Methods, U.S. Department of Labor, Available at: http://www.bls.gov/opub/hom/pdf/homch2.pdf (accessed September 19, 2013).Google Scholar

  • Valliant, R. (1987). Generalized Variance Functions in Stratified Two-Stage Sampling. Journal of American Statistical Association, 82, 499-508.Google Scholar

  • Werking, G. (1997). Overview of the CES redesign. In JSM Proceedings, the Section on Survey Research Methods: American Statistical Association, 512-516. Available at: http://www.amstat.org/sections/SRMS/Proceedings/ (accessed September 19, 2013).Google Scholar

  • Wolter, K.M. (2007). Introduction to Variance Estimation (Second Edition). New York: Springer-Verlag. Google Scholar

About the article

Published Online: 2014-02-14

Published in Print: 2014-03-01


Citation Information: Journal of Official Statistics, ISSN (Online) 2001-7367, DOI: https://doi.org/10.2478/jos-2014-0004.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in