Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Official Statistics

The Journal of Statistics Sweden

4 Issues per year

IMPACT FACTOR 2016: 0.411
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.710
Source Normalized Impact per Paper (SNIP) 2016: 0.975

Open Access
See all formats and pricing
More options …

A Convenient Method of Decomposing the Gini Index by Population Subgroups

Tomson Ogwang
  • Corresponding author
  • Department of Economics, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-14 | DOI: https://doi.org/10.2478/jos-2014-0005


We propose a convenient method of estimating the within-group, between-group, and interaction components of the overall traditional Gini index from the estimated parameters of underlying “trick regression models” involving known forms of heteroscedasticity related to income. Two illustrative examples involving both real and artificial data are provided. The issue of appropriate standard error of the subgroup decomposition is also discussed.

Keywords: Subgroup decomposition; Stochastic approach; Gini index; pseudo-Gini


  • Bhattacharya, N. and Mahalanobis, B. (1967). Regional Disparities in Household Consumption in India. American Statistical Association Journal, 62, 143-161. DOI: http://www.dx.doi.org/10.1080/01621459.1967.10482896.CrossrefGoogle Scholar

  • Biewen, M. (2002). Bootstrap Inference for Inequality, Mobility and Poverty Measurement. Journal of Econometrics, 108, 317-342. DOI: http://www.dx.doi.org/10.1016/S0304-4076(01)00138-5.Web of ScienceCrossrefGoogle Scholar

  • Cowell, F.A. (1989). Sampling Variance and Decomposable Inequality Measures. Journal of Econometrics, 42, 27-41. DOI: http://www.dx.doi.org/10.1016/ 0304-4076(89)90073-0.CrossrefGoogle Scholar

  • Dagum, C. (1997). A New Approach to the Decomposition of the Gini Income Inequality Ratio. Empirical Economics, 22, 515-531. DOI: http://www.dx.doi.org/10.1007/ 978-3-642-51073-1_4.CrossrefGoogle Scholar

  • Davidson, R. (2009). Reliable Inference for the Gini Index. Journal of Econometrics, 150, 30-40.Web of ScienceGoogle Scholar

  • Dixon, P.M., Weiner, J., Mitchel-Olds, T., and Woodley, R. (1987). Bootstrapping the Gini Coefficient of Inequality. Ecology, 68, 1548-1551. DOI: http://www.dx.doi.org/10.2307/1939238.CrossrefGoogle Scholar

  • Fei, J.C.H., Ranis, G., and Kuo, S.W.Y. (1978). Growth and the Family Distribution of Income by Factor Components. Quarterly Journal of Economics, 92, 17-53. DOI: http://www.dx.doi.org/10.2307/1885997.CrossrefGoogle Scholar

  • Giles, D. (2004). Calculating a Standard Error for the Gini Coefficient: Some Further Results. Oxford Bulletin of Economics and Statistics, 66, 425-433. DOI: http://www. dx.doi.org/10.1111/j.1468-0084.2004.00086.x.CrossrefGoogle Scholar

  • Gray, D., Mills, J.A., and Zandvakili, S. (2003). Statistical Inference of Inequality With Decompositions: the Canadian Experience. Empirical Economics, 28, 291-302. DOI: http://www.dx.doi.org/10.1007/s001810200131.CrossrefGoogle Scholar

  • Kanbur, R. (2006). The Policy Significance of Inequality Decompositions. Journal of Economic Inequality, 4, 367-374. DOI: http://www.dx.doi.org/10.1007/s10888-005-9013-5.CrossrefGoogle Scholar

  • Karoly, L.A. (1992). Changes in the Distribution of Individual Earnings in the United States: 1967-1986. Review of Economics and Statistics, 74, 107-115. Available at: http://www.jstor.org/stable/2109548 (access September 1, 2011).Google Scholar

  • Langel, M. and Tille´, Y. (2013). Variance Estimation of the Gini Index: Revisiting a Result Several Times Published. Journal of the Royal Statistical Society Series A Statistics in Society, 176, 521-540. DOI: http://www.dx.doi.org/10.1111/j.1467-985X.2012.01048.x.CrossrefWeb of ScienceGoogle Scholar

  • Maasoumi, E. (1994). Empirical Analysis of Inequality and Welfare. Handbook of Applied Microeconomics, P. Schmidt and H. Peasaran (eds). Oxford: Blackwell.Google Scholar

  • Mills, J. and Zandvakili, S. (1997). Statistical Inference Via Bootstrapping for Measures of Economic Inequality. Journal of Applied Econometrics, 12, 133-150. DOI: http://www. dx.doi.org/10.1002/(SICI)1099-1255(199703)12:2,133::AID-JAE433.3.0.CO;2-H.CrossrefGoogle Scholar

  • Modarres, R. and Gastwirth, J.L. (2006). A Cautionary Note on Estimating the Standard Error of the Gini Index of Inequality. Oxford Bulletin of Economics and Statistics, 68, 385-390. DOI: http://www.dx.doi.org/10.1111/j.1468-0084.2006.00167.x.CrossrefGoogle Scholar

  • Mussard, S. and Richard, P. (2012). Linking Yitzhaki’s and Dagum’s Gini Decompositions. Applied Economics, 44, 2997-3010. DOI: http://www.dx.doi.org/10.1080/00036846.2011.568410.CrossrefWeb of ScienceGoogle Scholar

  • Ogwang, T. (2000). A Convenient Method of Computing the Gini Index and its Standard Error. Oxford Bulletin of Economics and Statistics, 62, 123-129. DOI: http://www.dx. doi.org/10.1111/1468-0084.00164.CrossrefGoogle Scholar

  • Ogwang, T. (2004). Calculating a Standard Error for the Gini Coefficient: Some Further Results: Reply. Oxford Bulletin of Economics and Statistics, 66, 435-437. DOI: http:// www.dx.doi.org/10.1111/j.1468-0084.2004.00087.x.CrossrefGoogle Scholar

  • Ogwang, T. (2006). A Cautionary Note on Estimating the Standard Error of the Gini Index of Inequality: Comment. Oxford Bulletin of Economics and Statistics, 68, 391-393. DOI: http://www.dx.doi.org/10.1111/j.1468-0084.2006.00167.x.CrossrefGoogle Scholar

  • Ogwang, T. (2007). Additional Properties of a Linear Pen’s Parade for Individual Data Using the Stochastic Approach to the Gini Index. Economics Letters, 96, 369-374.Google Scholar

  • Pyatt, G. (1976). On the Interpretation and Disaggregation of Gini Coefficients. Economic Journal, 86, 243-255. Available at: http://www.jstor.org/stable/2230745.Google Scholar

  • Radaelli, P. (2010). On the Decomposition by Subgroups of the Gini Index and Zenga’s Uniformity and Inequality Indexes. International Statistical Review, 78, 81-101. DOI: http://www.dx.doi.org/10.1111/j.1751-5823.2010.00100.x.Web of ScienceCrossrefGoogle Scholar

  • Rao, V.M. (1969). Two Decompositions of Concentration Ratio. Journal of the Royal Statistical Society Series A (General), 132, 418-425. Available at: http://www.jstor. org/stable/2344120.Google Scholar

  • Sastry, D.V.S. and Kelkar, U.R. (1994). Note on the Decomposition of Gini Inequality. Review of Economics and Statistics, LXXVI, 584-586. Available at: http://www.jstor. org/stable/2109984.Google Scholar

  • Shao, J. and Tu, D. (1995). Jackknife and Bootstrap. New York: Springer.Web of ScienceGoogle Scholar

  • Shorrocks, A.F. (1982). Inequality Decomposition by Factor Components. Econometrica, 50, 193-211. Available at: http://www.jstor.org/stable/1912537.Google Scholar

  • Silber, J. (1989). Factor Components, Population Subgroups and the Computation of the Gini Index of Inequality. Review of Economics and Statistics, 71, 107-115. Available at: http://www.jstor.org/stable/1928057.Google Scholar

  • Yao, S. and Liu, J. (1996). Decomposition of the Gini Coefficient by Class: A New Approach. Applied Economics Letters, 3, 115-119.Google Scholar

  • Yao, S. (1999). On the Decomposition of Gini Coefficients by Population Class and Income Source: A Spreadsheet Approach and Application. Applied Economics, 31, 1249-1264. DOI: http://www.dx.doi.org/10.1080/000368499323463.CrossrefGoogle Scholar

  • Yitzhaki, S. (1991). Calculating Jackknife Variance Estimators for Parameters of the Gini Method. Journal of Business and Economic Statistics, 9, 235-239. DOI: http://www.dx.doi.org/10.1080/07350015.1991.10509849. CrossrefGoogle Scholar

About the article

Published Online: 2014-02-14

Published in Print: 2014-03-01

Citation Information: Journal of Official Statistics, Volume 30, Issue 1, Pages 91–105, ISSN (Online) 2001-7367, DOI: https://doi.org/10.2478/jos-2014-0005.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Giovanni Maria Giorgi and Chiara Gigliarano
Journal of Economic Surveys, 2017, Volume 31, Number 4, Page 1130
Tomson Ogwang
Journal of Official Statistics, 2016, Volume 32, Number 3
Tomson Ogwang
METRON, 2016, Volume 74, Number 1, Page 11
Rajesh K. Chauhan, Sanjay K. Mohanty, S V Subramanian, Jajati K Parida, and Balakrushna Padhi
Social Indicators Research, 2016, Volume 127, Number 3, Page 1249

Comments (0)

Please log in or register to comment.
Log in