Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Official Statistics

The Journal of Statistics Sweden

4 Issues per year


IMPACT FACTOR 2016: 0.411
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.710
Source Normalized Impact per Paper (SNIP) 2016: 0.975

Open Access
Online
ISSN
2001-7367
See all formats and pricing
More options …

Variance Estimation of Change in Poverty Rates: an Application to the Turkish EU-SILC Survey

Melike Oguz Alper / Yves G. Berger
Published Online: 2015-06-27 | DOI: https://doi.org/10.1515/jos-2015-0012

Abstract

Interpreting changes between point estimates at different waves may be misleading if we do not take the sampling variation into account. It is therefore necessary to estimate the standard error of these changes in order to judge whether or not the observed changes are statistically significant. This involves the estimation of temporal correlations between cross-sectional estimates, because correlations play an important role in estimating the variance of a change in the cross-sectional estimates. Standard estimators for correlations cannot be used because of the rotation used in most panel surveys, such as the European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Furthermore, as poverty indicators are complex functions of the data, they require special treatment when estimating their variance. For example, poverty rates depend on poverty thresholds which are estimated from medians. We propose using a multivariate linear regression approach to estimate correlations by taking into account the variability of the poverty threshold. We apply the approach proposed to the Turkish EU-SILC survey data.

Keywords : Linearisation; multivariate regression; stratification; unequal inclusion probabilities.

References

  • Atkinson, A.B. and E. Marlier. 2010. “Income and Living Conditions in Europe.” Publications Office of the European Union, Luxembourg. Available at: http://ec.europa.eu/eurostat/documents/3217494/5722557/KS-31-10-555-EN.PDF/e8c0a679-be01-461ca08b-7eb08a272767 (accessed April 30, 2015).Google Scholar

  • Berger, Y.G. 2004. “Variance Estimation for Measures of Change in Probability Sampling.” Canadian Journal of Statistics 32: 451-467. DOI: http://dx.doi.org/10.2307/3316027.CrossrefGoogle Scholar

  • Berger, Y.G. 2008. “A Note on the Asymptotic Equivalence of Jackknife and Linearization Variance Estimation for the Gini Coefficient.” Journal of Official Statistics 24: 541-555.Google Scholar

  • Berger, Y.G., T. Goedemé, and G. Osier. 2013. Handbook on Standard Error Estimation and Other Related Sampling Issues in EU-SILC Second Network for the Analysis of EU-SILC, EuroStat. Available at: http://www.cros-portal.eu/content/handbook-standard-error-estimation-and-other-related-sampling-issues-ver-29072013 (accessed February 6, 2013).Google Scholar

  • Berger, Y.G. and R. Priam. 2010. “Estimation of Correlations between Cross-Sectional Estimates from Repeated Surveys - an Application to the Variance of Change.” In Proceedings of the 2010 Symposium of Statistics Canada, [26-29 October, 2010]. [10 pp.].Google Scholar

  • Berger, Y.G. and R. Priam. 2015. A Simple Variance Estimator of Change for Rotating Repeated Surveys: an Application to the EU-SILC Household Surveys. Journal of the Royal Statistical Society, Series A (Statistics in Society). Available at: DOI: http://dx.doi.org/10.1111/rssa.12116.22 pp. (accessed June 9, 2015).CrossrefGoogle Scholar

  • Berger, Y.G. and C.J. Skinner. 2003. “Variance Estimation of a Low-Income Proportion.” Journal of the Royal Statistical Society, Series C (Applied Statistics) 52: 457-468. DOI: http://dx.doi.org/10.1111/1467-9876.00417.CrossrefGoogle Scholar

  • Betti, G. and F. Gagliardi. 2007. “Jackknife Variance Estimation of Differences and Averages of Poverty Measures.” Working Paper 68, Siena: Dipartimento di Metodi Quantitativi, Universita` degli Studi.Google Scholar

  • Chao, M.T. 1982. “A General Purpose Unequal Probability Sampling Plan.” Biometrika 69: 653-656. DOI: http://dx.doi.org/10.1093/biomet/69.3.653.CrossrefGoogle Scholar

  • Christine, M. and T. Rocher. 2012. “Construction d’échantillons astreints a´ des conditions de recouvrement par rapport un échantillon antérieur et a´ des conditions d’équilibrage par rapport a´ des variables courantes.” Proceedings of the 10th Journée de Méthodologie Statistique de l’INSEE, January 24-26, 2012. [41 pp.]. Paris.Google Scholar

  • Demnati, A. and J.N.K. Rao. 2004. “Linearization Variance Estimators for Survey Data.” Survey Methodology 30: 17-26.Google Scholar

  • Deville, J.C. 1999. “Variance Estimation for Complex Statistics and Estimators: Linearization and Residual Techniques.” Survey Methodology 25: 193-203.Google Scholar

  • Di Meglio, E., G. Osier, T. Goedemé, Y. G. Berger, and E. Di Falco. 2013. “Standard Error Estimation in EU-SILC - First Results of the Net-SILC2 Project.” In Proceedings of the Conference on New Techniques and Technologies for Statistics, [March 5-7, 2013]. [10 pp.]. Brussels. Available at: http://www.crosportal.eu/sites/default/files//NTTS2013%20Proceedings_0.pdf (last accessed April 30, 2015).Google Scholar

  • Eurostat. 2003. “‘Laeken’ Indicators-Detailed Calculation Methodology.” Available at: http://www.cso.ie/en/media/csoie/eusilc/documents/Laeken%20Indicators%20-%20calculation%20algorithm.pdf (accessed February 4, 2014).Google Scholar

  • Eurostat. 2012. “European Union Statistics on Income and Living Conditions (EU-SILC).” Available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eusilc (accessed January 7, 2013).Google Scholar

  • Feiveson, A.H. 2002. “Power by simulation.” The STATA Journal 2: 107-124.Google Scholar

  • Gambino, J.G. and P.L.N. Silva. 2009. “Sampling and Estimation in Household Surveys.” In Handbook of Statistics, 29A: Design, Method and Applications, edited by D. Pfeffermann and C.R. Rao, 407-439. Amsterdam: Elsevier.Web of ScienceGoogle Scholar

  • Goedemé, T. 2010. “The Standard Error of Estimates Based on EU-SILC. An Exploration through the Europe 2020 Poverty Indicators.” Working paper 10/09, [Herman Deleeck Centre for Social Policy, University of Antwerp, Belgium]. Available at: http://www.centrumvoorsociaalbeleid.be/index.php?q=node/2204/en (accessed April 30, 2015).Google Scholar

  • Graf, E. 2013. “Variance Estimation by Linearization for Indicators of Poverty and Social Exclusion in a Person and Household Survey Context.” Paper presented at New Techniques and Technologies for Statistics, Brussels. Available at: http://www.cros-portal.eu/content/14a01ericgraf (last accessed February 5, 2014).Google Scholar

  • Graf, E. and Y. Tillé. 2014. “Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators.” Survey Methodology 40: 61-79.Google Scholar

  • Hansen, M.H. and W.N. Hurwitz. 1943. “On the Theory of Sampling from Finite Populations.” The Annals of Mathematical Statistics 14: 333-362.Google Scholar

  • Holmes, D.J. and C.J. Skinner. 2000. “Variance Estimation for Labour Force Survey Estimates of Level and Change.” The Office for National Statistics, London, United Kingdom. Government Statistical Service Methodology Series 21, 40 pp.Google Scholar

  • Horvitz, D.G. and D.J. Thompson. 1952. “A Generalization of Sampling Without Replacement From a Finite Universe.” Journal of the American Statistical Association 47: 663-685. DOI: http://dx.doi.org/10.1080/01621459.1952.10483446.CrossrefGoogle Scholar

  • Kalton, G. 2009. “Design for Surveys over Time.” In Handbook of Statistics, 29A: Design, Method and Applications, edited by D. Pfeffermann and C.R Rao, 89-108. Amsterdam: Elsevier.Google Scholar

  • Kish, L. 1965. Survey Sampling. New York: John Wiley and Sons.Google Scholar

  • Laniel, N. 1987. “Variances for a Rotating Sample from a Changing Population.” In Proceedings of the Survey Research Methods Section, American Statistical Association, [August 17-20, 1987]. 496-500. Alexandria, VA: American Statistical Association.Google Scholar

  • McDonald, J.B. 1984. “Some Generalized Functions for the Size Distribution of Income.” Econometrica 52: 647-664.CrossrefGoogle Scholar

  • Muennich, R. and S. Zins. 2011. “Variance Estimation for Indicators of Poverty and Social Exclusion.” Work package of the European project on Advanced Methodology for European Laeken Indicators (AMELI). Available at: http://www.uni-trier.de/index.php?id=24676 (accessed January 4, 2013).Google Scholar

  • Nordberg, L. 2000. “On Variance Estimation for Measures of Change when Samples Are Coordinated by the Use of Permanent Random Numbers.” Journal of Official Statistics 16: 363-378.Google Scholar

  • Osier, G. 2009. “Variance Estimation for Complex Indicators of Poverty and Inequality Using Linearization Techniques.” Survey Research Methods 3: 167-195.Google Scholar

  • Osier, G., Y.G. Berger, and T. Goedemé. 2013. “Standard Error Estimation for the EU-SILC Indicators of Poverty and Social Exclusion.” Eurostat Methodologies and Working Papers series. Publications Office of the European Union, Luxembourg. Available at: http://ec.europa.eu/eurostat/documents/3888793/5855973/KS-RA-13-024-EN.PDF (accessed April 30, 2015).Google Scholar

  • Preston, I. 1995. “Sampling Distributions of Relative Poverty Statistics.” Applied Statistics 44: 91-99.Google Scholar

  • Qualité, L. and Y. Tillé. 2008. “Variance Estimation of Changes in Repeated Surveys and its Application to the Swiss Survey of Value Added.” Survey Methodology 34: 173-181.Google Scholar

  • Salem, A.B.Z. and T.D. Mount. 1974. “A Convenient Descriptive Model of Income Distribution: The Gamma Density.” Econometrica 42: 1115-1127.CrossrefGoogle Scholar

  • Schmeiser, B.W. and R. Lal. 1982. “Bivariate Gamma Random Vectors.” Operations Research 30: 355-374. DOI: http://dx.doi.org/10.1287/opre.30.2.355.CrossrefGoogle Scholar

  • Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.Google Scholar

  • Tam, S.M. 1984. “On Covariances from Overlapping Samples.” American Statistician 38: 288-289. DOI: http://dx.doi.org/10.1080/00031305.1984.10483227.CrossrefGoogle Scholar

  • Verma, V. and G. Betti. 2005. “Sampling Errors and Design Effects for Poverty Measures and Other Complex Statistics.” Working Paper 53, Siena: Dipartimento di Metodi Quantitativi, Universita` degli Studi.Google Scholar

  • Verma, V. and G. Betti. 2011. “Taylor Linearisation Sampling Errors and Design Effects for Poverty Measures and Other Complex Statistics.” Journal of Applied Statistics 38: 1549-1576. DOI: http://dx.doi.org/10.1080/02664763.2010.515674.CrossrefWeb of ScienceGoogle Scholar

  • Wood, J. 2008. “On the Covariance Between Related Horvitz-Thompson Estimators.” Journal of Official Statistics 24: 53-78. Google Scholar

About the article

Received: 2013-07-01

Revised: 2014-02-01

Accepted: 2014-04-01

Published Online: 2015-06-27

Published in Print: 2015-06-01


Citation Information: Journal of Official Statistics, Volume 31, Issue 2, Pages 155–175, ISSN (Online) 2001-7367, DOI: https://doi.org/10.1515/jos-2015-0012.

Export Citation

© by Melike Oguz Alper. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Y. G. Berger and R. Priam
Journal of the Royal Statistical Society: Series A (Statistics in Society), 2016, Volume 179, Number 1, Page 251

Comments (0)

Please log in or register to comment.
Log in