Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Official Statistics

The Journal of Statistics Sweden

4 Issues per year

IMPACT FACTOR 2016: 0.411
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.710
Source Normalized Impact per Paper (SNIP) 2016: 0.975

Open Access
See all formats and pricing
More options …

Sentiments and Perceptions of Business Respondents on Social Media: an Exploratory Analysis

Vanessa Torres van Grinsven
  • Faculty of Social Sciences, Utrecht University, Padualaan 14, 3584 CH, Utrecht; Statistics Netherlands, CBS-weg 11, 6412 EX, Heerlen, Netherlands.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ger Snijkers
Published Online: 2015-06-27 | DOI: https://doi.org/10.1515/jos-2015-0018


The perceptions and sentiments of business respondents are considered important for statistical bureaus. As perceptions and sentiments are related to the behavior of the people expressing them, gaining insights into the perceptions and sentiments of business respondents is of interest to understand business survey response. In this article we present an exploratory analysis of expressions in the social media regarding Statistics Netherlands. In recent years, social media have become an important infrastructure for communication flows and thus an essential network in our social structure. Within that network participants are actively involved in expressing sentiments and perceptions. The results of our analysis provide insights into the perceptions and sentiments that business respondents have of this national statistical institute and specifically its business surveys. They point towards the specific causes that have led to a positive or a negative sentiment. Based on these results, recommendations aimed at influencing the perceptions and sentiments will be discussed, with the ultimate goal of stimulating survey participation. We also suggest recommendations regarding social media studies on sentiments and perceptions of survey respondents.

Keywords: Business survey communication; survey participation; response motivation; expressions; social media


  • Adolphs, S., B. Brown, R. Carter, P. Crawford, and O. Sahota. 2004. “Applying Corpus Linguistics in a Health Care Context.” Journal of Applied Linguistics 1: 9-28.Google Scholar

  • Baker, P., C. Gabrielatos,M. Khosravinik, M. Krzyzanowski, T. McEnery, and R. Wodak. 2008. “A Useful Methodologic Synergy? Combining Critical Discourse Analysis and Corpus Linguistics to Examine Discourses of Refugees and Asylum Seekers in the UK Press.” Discourse and Society 19: 273-306. Doi: http://dx.doi.org/10.1177/0957926508088962.CrossrefWeb of ScienceGoogle Scholar

  • Blumer, H. 1973. Symbolic Interactionism: Perspectives and method. Prentice-Hall, Englewood Cliffs: New Jersey.Google Scholar

  • Braun, V. and V. Clarke. 2006. “Using Thematic Analysis in Psychology.” Qualitative Research in Psychology 3: 77-101. Doi: http://dx.doi.org/10.1191/1478088706qp063oa.CrossrefGoogle Scholar

  • Coosto. 2014. The Facts Webpage. Available at: http://www.coosto.nl/home/about/feiten and in English at http://www.coosto.co.uk/home/about/facts (accessed March 2014).Google Scholar

  • Daas, P.J.H. and M.J. Puts. 2014. “Social Media Sentiment and Consumer Confidence.Statistics Paper Series, No. 5. European Centeral Bank.” Available at: http://www.ecb.europa.eu/pub/pdf/scpsps/ecbsp5.pdf (accessed April 16, 2015).Google Scholar

  • Daas, P.J.H. and M.J. Puts. 2014a. “New and Emerging Methods: Big Data as a Source of Statistical Information.” The Survey Statistician 69. Available at: http://isi.cbs.nl/iass/N69.pdf (accessed April 16, 2015).Google Scholar

  • Daas, P.J.H., M.J. Puts, B. Buelens, and P.A.M. van den Hurk. 2013. “Big Data and Official Statistics.” In Proceedings of the NTTS (New Techniques and Technologies for Statistics) 2013, March 5-7, Brussels. Available at: http://www.cros-portal.eu/sites/default/files/NTTS2013fullPaper_76.pdf (accessed April 16, 2015).Google Scholar

  • Daas, P.J.H., M. Roos, M. van de Ven, and J. Neroni. 2012. “Twitter as a Potential Data Source for Statistics.” Discussion paper 201221. The Hague/Heerlen: Statistics Netherlands. Available at: http://www.cbs.nl/NR/rdonlyres/04B7DD23-5443-4F98-B466-1C67AAA19527/0/201221x10pub.pdf (accessed April 16, 2015).Google Scholar

  • Dillman, D. 1978. Mail and Telephone Surveys: The Total Design Method. New York: John Wiley and sons.Google Scholar

  • Gabrielatos, C. and P. Baker. 2008. “Fleeing, Sneaking, Flooding: A Corpus Analysis of Discursive Constructions of Refugees and Asylum Seekers in the UK Press 1996-2005.” Journal of English Linguistics 36: 5-38. Doi: http://dx.doi.org/10.1177/0075424207311247.Web of ScienceCrossrefGoogle Scholar

  • Giesen, D. 2012. “Exploring Causes and Effects of Perceived Response Burden.” Paper presented at the Fourth International Conference on Establishment Surveys (ICES IV), Montreal, 11-14 June, 2012. Available at: http://www.amstat.org/meetings/ices/2012/papers/302171.pdf (accessed April 16, 2015).Google Scholar

  • Groves, R.M. 2011. “Three Eras of Survey Research.” Public Opinion Quarterly 75: 861-871. Doi: http://dx.doi.org/10.1093/poq/nfr057.CrossrefGoogle Scholar

  • Guion, L.A., D.C. Diehl, and D. McDonald. 2011. Triangulation: Establishing the Validity of Qualitative Studies. Available at: http://edis.ifas.ufl.edu/fy394 (accessed June 1, 2014).Google Scholar

  • Haraldsen, G. 2013. “Quality Issues in Business Surveys.” In Designing and Conducting Business Surveys, edited by G. Snijkers, H. Haraldsen, J. Jones, and D. Willimack, 83-125. Hoboken, NJ: Wiley.Google Scholar

  • Haraldsen, G., J. Jones, D. Giesen, and L.-C. Zhang. 2013. “Understanding and Coping with Response Burden.” In Designing and Conducting Business Surveys, edited by G. Snijkers, H. Haraldsen, J. Jones, and D. Willimack, 219-252. Hoboken: Wiley.Google Scholar

  • Hardt-Mautner, G. 1995. Only Connect. Critical Discourse Analysis and Corpus Linguistics. UCREL Technical Paper 6. Lancaster: Lancaster University. Available at: http://ucrel.lancs.ac.uk/papers/techpaper/vol6.pdf (accessed April 16, 2015).Google Scholar

  • Hoey, M. 2005. Lexical Priming: A New Theory of Words and Language. London: Routledge.Google Scholar

  • Homans, G.C. 1958. “Social Behavior as Exchange.” Americal Journal of Sociology 63: 597-606.Google Scholar

  • Jehn, K.A. and L. Doucet. 1996. “Developing Categories from Interview Data: Text Analysis and Multidimensional Scaling. Part 1.” Field Methods 8: 15-16.Google Scholar

  • Jehn, K.A. and L. Doucet. 1997. “Developing Categories for Interview Data: Consequences of Different Coding and Analysis Strategies in Understanding.” Field Methods 9: 1-7.Google Scholar

  • Jensen, K.B. 2012. A Handbook of Media and Communication Research. Qualitative and Quantitative Methodologies, 2nd ed. New York: Routledge.Google Scholar

  • Jensen, K.B. and R. Helles. 2011. “The Internet as a Cultural Forum: Implications for Research.” New Media and Society 13: 517-533. Doi: http://dx.doi.org/10.1177/1461444810373531.Web of ScienceCrossrefGoogle Scholar

  • Leech, G. 1992. “Corpora and Theories of Linguistic Performance.” In Directions in Corpus Linguistics: Proceedings of the Nobel Symposium 82, Stockholm, 4-8 August 1991, edited by J. Svartvik, 105-122. Berlin: Mouton de Gruyter.Google Scholar

  • Mautner, G. 2007. “Mining Large Corpora for Social Information: The Case of Elderly.” Language in Society 36: 51-72. Doi: http://dx.doi.org/10.1017/S0047404507070030.CrossrefGoogle Scholar

  • Nattinger, J.R. and J.S. DeCarrico. 1992. Lexical Phrases and Language Teaching.Oxford: Oxford University Press.Google Scholar

  • Pennebaker, J.W., M.E. Francis, and R.J. Booth. 2001. Linguistic Inquiry and Word Count (LWIC): A Computerized Text Analysis Program. Mahwah, NJ: Erlbaum Publishers Poon, P., G. Albaum, and F. Evangelista. 1999. “An Empirical Test of Alternative Theories of Survey Response Behaviour.” International Journal of Market Research 41: 1-18.Google Scholar

  • Ryan, G.W. and H.R. Bernard. 2003. “Techniques to Identify Themes.” Field Methods 15: 85-109. Doi: http://dx.doi.org/10.1177/1525822X02239569.CrossrefGoogle Scholar

  • Ryan, G.R. and T. Weisner. 1996. “Analyzing Words in Brief Descriptions: Fathers and Mothers Describe Their Children.” Field Methods 8: 13-16.Google Scholar

  • Seale, C., S. Ziebland, and J. Charteris-Black. 2006. “Gender, Cancer Experience and Internet Use: A Comparative Word Analysis of Interviews and Online Cancer Support Groups.” Social Science and Medicine 62: 2577-2590. Doi: http://dx.doi.org/10.1016/j.socscimed.2005.11.016.CrossrefGoogle Scholar

  • Silverman, D. 2000. “Analyzing Talk and Text.” In The Handbook of Qualitative Research, edited by N.K. Denzin and Y.S. Lincoln, 821-834. Thousand Oaks, CA: Sage.Google Scholar

  • Sinclair, J. 1991. Corpus Concordance Collocation. Oxford: Oxford University Press.Google Scholar

  • Singer, E. 2012. “Toward a Benefit-Cost Theory of Survey Participation: Evidence, Further Tests, and Implications.” Journal of Official Statistics 27: 379-392.Google Scholar

  • Snijkers, G. 2008. “Getting Data for Business Statistics: A Response Model.” Paper presented at the 4th European Conference on Quality in Official Statistics, Rome.Available at: http://q2008.istat.it/sessions/25.html (accessed April 16, 2015).Google Scholar

  • Snijkers, G. 2009. “Getting Data for (Business) Statistics: What’s new? What’s next?” Paper presented at the 2009 NTTS Conference (New Techniques and Technologies for Statistics). Brussels. Available at: http://ec.europa.eu/eurostat/documents/1001617/4398389/S5P2-GETTING-DATA-FOR-STATISTICS-SNIJKERS.pdf (accessed April 16, 2015).Google Scholar

  • Snijkers, G., B. Berkenbosch, and M. Luppes. 2007. “Understanding the Decision to Participate in a Business Survey.” In Proceedings of the Third International Conference on Establishment Surveys (ICES-III). 18-21 June, 2007. Alexandria, VA: American Statistical Association, 1048-1059. Available at: https://www.amstat.org/meetings/ices/2007/proceedings/TOC.pdf.Google Scholar

  • Snijkers, G., R. Go¨ttgens, and H. Hermans. 2011. “Data Collection and Data Sharing at Statistics Netherlands: Yesterday, Today, Tomorrow.” Paper presented at the 59th plenary session of the Conference of European Statisticians, 14-16 June, 2011, Geneva.Available at: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/2011/20.e.pdf (accessed April 16, 2015).Google Scholar

  • Snijkers, G., G. Haraldsen, J. Jones, and D.K. Willimack. 2013. Designing and Conducting Business Surveys. Hoboken, NJ: Wiley.Google Scholar

  • Snijkers, G. and J. Jones. 2013. “Business Survey Communication.” In Designing and Conducting Business Surveys, edited by G. Snijkers, H. Haraldsen, J. Jones, and D. Willimack, 359-430. Hoboken, NJ: Wiley.Google Scholar

  • Stieglitz, S. and L. Dang-Xuan. 2012. “Social Media and Political Communication: A Social Media Analytics Framework.” Social Network Analysis and Mining 3: 1277-1291. Doi: http://dx.doi.org/10.1007/s13278-012-0079-3.CrossrefGoogle Scholar

  • Tesch, R. 1990. Qualitative Research: Analysis Types and Software Tools. New York: Falmar Press. Torres van Grinsven, V., I. Bolko, and M. Bavdazˇ. 2014. In Search of Motivation for Business Survey Response Task. Journal of Official Statistics 30: 579-606. Doi: http://dx.doi.org/10.2478/JOS-2014-0039.CrossrefGoogle Scholar

  • Torres van Grinsven, V., I. Bolko, M. Bavdazˇ, and S. Biffignandi. 2011. “Motivation in Business Surveys.” BLUE-ETS Conference on business’ burden and motivation in official surveys, Statistics Netherlands, March 22-23 edited by D. Giesen and M. Bavdazˇ. Available at: http://www.cbs.nl/NR/rdonlyres/23FD3DF5-6696-4A04-B8EF-1FAACEAD995C/0/2011proceedingsblueets.pdf (accessed April 16, 2015).Google Scholar

  • Van Vroenhoven, J. 2006. “Storend!” In Humor om te huilen: Zwartboek doorgeslagen regelgeving, 22-23. Tilburg: Brabants-Zeeuwse Werkgeversvereniging (BZW).Google Scholar

  • Wenemark, M., A. Persson, H. Noorlind Brage, T. Svensson, and M. Kristenson. 2011. “Applying Motivation Theory to Achieve Increased Response Rates, Respondent Satisfaction and Data Quality.” Journal of Official Statistics 27: 393-414.Google Scholar

  • Willimack, D. and G. Snijkers. 2013. “The Business Context and Its Implications for the Survey Response Process.” In Designing and Conducting Business Surveys, edited by G. Snijkers, H. Haraldsen, J. Jones, and D. Willimack, 39-82. Hoboken, NJ: Wiley.Google Scholar

  • Wodak, R. 2007. “Pragmatics and Critical Discourse Analysis: A Cross-Disciplinary Inquiry.” Journal of Pragmatics and Cognition 15: 203-227. Doi: http://dx.doi.org/10.1075/pc.15.1.13wod. CrossrefGoogle Scholar

About the article

Received: 2013-08-01

Revised: 2015-01-01

Accepted: 2015-01-01

Published Online: 2015-06-27

Published in Print: 2015-06-01

Citation Information: Journal of Official Statistics, Volume 31, Issue 2, Pages 283–304, ISSN (Online) 2001-7367, DOI: https://doi.org/10.1515/jos-2015-0018.

Export Citation

© by Vanessa Torres van Grinsven. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Miroslav Hudec and Dušan Praženka
Statistical Journal of the IAOS, 2016, Volume 32, Number 2, Page 245

Comments (0)

Please log in or register to comment.
Log in