Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pedagogy

The Journal of University of Trnava

2 Issues per year


CiteScore 2016: 0.17

SCImago Journal Rank (SJR) 2016: 0.190
Source Normalized Impact per Paper (SNIP) 2016: 0.185

Open Access
Online
ISSN
1338-2144
See all formats and pricing
More options …

The relationship between fluid intelligence and learning potential: Is there an interaction with attentional control?

Marta Filičková
  • University of Presov Faculty of Education Department of Preschool and Elementary Education and Psychology 17. Novembra 15 Presov 080 01 Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivan Ropovik
  • University of Presov Faculty of Education Department of Preschool and Elementary Education and Psychology 17. Novembra 15 Presov 080 01 Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Bobaková
  • University of Presov Faculty of Education Department of Preschool and Elementary Education and Psychology 17. Novembra 15 Presov 080 01 Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iveta Kovalčíková
  • University of Presov Faculty of Education Department of Preschool and Elementary Education and Psychology 17. Novembra 15 Presov 080 01 Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/jped-2015-0002

Abstract

The main aim of the study was to explore the relationship between fluid intelligence (gf), attentional control (AC), and learning potential (LP), and to investigate the interaction effect between gf and AC on LP. The sample comprised 210 children attending the fourth grade of a standard elementary school. It was hypothesized that the extent of the association between gf and LP depends on the level of attentional control, so that a low level of AC would weaken or possibly break that link, while a high level of AC would facilitate the employment of fluid general ability in learning situations. The results show that there was a moderate relationship between the measures of gf and LP, while gf was not found to be related to AC. Regarding the hypothesized interaction effect, the data suggested that the relationship between learning potential and fluid intelligence is invariant regarding the level of attentional control in the sample. Possible reasons for the lack of a moderation effect are discussed.

Keywords: fluid intelligence; attentional control; learning potential; interaction effect.

References

  • Ackerman, P., Beier, M., & Boyle, M. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 30-60.PubMedCrossrefGoogle Scholar

  • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park: Sage.Google Scholar

  • Alloway, T. P. (2009). Cognitive training: Improvements in academic attainments. Professional Association for Teachers of Students with Specific Learning Difficulties, 22, 57-61.Google Scholar

  • Alloway, T. P. (2010). Working memory and executive function profiles of students with borderline intellectual functioning. Journal of Intellectual Disability Research, 54(5), 448-456.CrossrefGoogle Scholar

  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29.PubMedCrossrefGoogle Scholar

  • Anderson, V., Jacobs, R., & Anderson, P. J. (Eds.). (2008). Executive functions and the frontal lobes: A lifespan perspective. NY: Psychology Press.Google Scholar

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423.CrossrefGoogle Scholar

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press.Google Scholar

  • Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., & Wszalek, T. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988-1000.CrossrefPubMedGoogle Scholar

  • Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29(2), 109-160.Google Scholar

  • Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458-469.CrossrefGoogle Scholar

  • Budoff, M. (1987). The validity of learning potential assessment. In: C. S. Lidz (Ed.), Dynamic assessment: An interactional approach to evaluating learning potential (pp. 53-81). New York, NY: Guilford Press.Google Scholar

  • Carlson, J. S., & Wiedl, K. H. (1979). Toward a differential testing approach: Testing- -the-limits employing the Raven matrices. Intelligence, 3(4), 323-344.CrossrefGoogle Scholar

  • Carter, C. S., Mintun, M., Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An (H2O)-O-15 PET study of Stroop task performance. Neuroimage, 2(4), 264-272.PubMedCrossrefGoogle Scholar

  • Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.Google Scholar

  • Chuderski, A. (2014). Which working memory components predict fluid intelligence. Psychology, 5(5), 328-339.CrossrefGoogle Scholar

  • Chuderski, A., Taraday, M., Nęcka, E., & Smoleń, T. (2012). Storage capacity explains fluid intelligence while executive control does not. Intelligence, 40(3), 278-295.CrossrefGoogle Scholar

  • Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, & M. Kyllonen, P. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32(2004), 277-296.CrossrefGoogle Scholar

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2002), 163-183.CrossrefGoogle Scholar

  • Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system (D-KEFS). San Antonio, TX: The Psychological Corporation.Google Scholar

  • Džuka, J., & Kovalčíková, I. (2008). Dynamické testovanie latentných učebných schopností [Dynamic testing of latent learning abilities]. Československá Psychologie, 52(4), 366-377.Google Scholar

  • Elliott, J., Grigorenko, E. L., & Resing, W. C. M. (2010). Dynamic assessment: The need for a dynamic approach. In E. Baker, B. McGraw, & P. Peterson (Eds.), International encyclopedia of education (3rd ed.). Oxford, United Kingdom: Elsevier.Google Scholar

  • Elliot, J. & Lauchlan, F. (1997). Assessing potential: The search for the philosopher’s stone? Educational and Child Psychology, 14(4), 6-16.Google Scholar

  • Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. Ross (Ed.), The Psychology of Learning and Motivation (pp. 145-199). New York, NJ: Elsevier. Google Scholar

  • Fabio, R. A. (2005). Dynamic assessment of intelligence is a better reply to adaptive behaviour and cognitive plasticity. The Journal of General Psychology, 132(1), 41-64.CrossrefGoogle Scholar

  • Ferrer, E., McArdle, J. J., Shawitz, B. A., Holahan, J. N., Marchione, K., & Shawitz, S. E. (2007). Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Developmental Psychology, 43(6), 1460-1473.PubMedCrossrefGoogle Scholar

  • Feuerstein, R., Rand, Y., & Hoffman, M. (1979). The dynamic assessment of retarded performers: The learning potential assessment device (LPAD). Baltimore, MD: University Park Press.Google Scholar

  • Feuerstein, R., Rand, Y., Hoffman, M. B., & Miller, R. (1980). Instrumental enrichment: An intervention program for cognitive modifiability. Baltimore, MD: University Park Press.Google Scholar

  • Fiszdon, J. M., McClough, J. F., Silverstein, S. M., Bell, M. D., Jaramillo, J. R., & Smith, T. E. (2006). Learning potential as a predictor of readiness for psychosocial rehabilitation in schizophrenia. Psychiatry Research, 143(2-3), 159-166.PubMedCrossrefGoogle Scholar

  • Freund, P. A., & Holling, H. (2011). Retest effects in matrix test performance: Differential impact of predictors at different hierarchy levels in an educational setting. Learning and Individual Differences, 21(5), 597-601.Google Scholar

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172-179.CrossrefPubMedGoogle Scholar

  • Haywood, H. C. (1997). Interactive assessment. In R. Taylor (Ed.), Assessment of persons with mental retardation (pp. 103-129). San Diego: Singular Publishing Haywood, H. C., & Lidz, C. S. (2007). Dynamic assessment in practice: Clinical and educational applications. Cambridge, NY: Cambridge University Press.Google Scholar

  • Hornung, C., Brunner, M., Reuter, R. A. P., & Martin, R. (2011). Children’s working memory: Its structure and relationship to fluid intelligence. Intelligence, 39(4), 210-22.CrossrefGoogle Scholar

  • Hotulainen, R., Thuneberg, H., Hautamäki, J., & Vainikainen, M-P. (2014). Measured attention in prolonged over-learned response tasks and its correlation to high level scientific reasoning and school achievement. Psychological Test and Assessment Modeling, 56(3), 237-254.Google Scholar

  • Jeltova, I., Birney, D., Fredine, N., Jarvin, L., Sternberg, R. J., & Grigorenko, E. L. (2011). Making instruction and assessment responsive to diverse students’ progress: Group-administered dynamic assessment in teaching mathematics. Journal of Learning Disabilities, 44(4), 381-395.CrossrefPubMedGoogle Scholar

  • Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CN: Praeger.Google Scholar

  • Kail, R. V. (2007). Longitudinal evidence that increases in processing speed and working memory enhance children’s reasoning. Psychological Science, 18(4), 312-313.CrossrefGoogle Scholar

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent variable approach to verbal and visuo-spatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189-217.CrossrefGoogle Scholar

  • Kovalčíková, I. (2009). Dynamic testing and assessment of latent learning capacities. Sosyal Bilimler Araştırmaları Dergisi, 1, 47-53.Google Scholar

  • Kovalčíková, I. (Ed.). (2010). Kognitívna stimulácia individuálnych edukačných potrieb žiaka zo sociálne znevýhodňujúceho prostredia [Cognitive stimulation of individual The Relationship Between Fluid Intelligence And Learning Potential: Is There An Interaction... 3 9 educational needs of pupils from socially disadvantaging environments]. Prešov, Slovakia: Vydavateľstvo Prešovskej univerzity.Google Scholar

  • Lee, K., Pe, M. L., Ang, S. Y., & Stankov, L. (2009). Do measures of working memory predict academic proficiency better than measures of intelligence? Psychology Science Quarterly, 51(4), 403-419.Google Scholar

  • Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59-80.CrossrefGoogle Scholar

  • Lidz, C. (2000). The Application of Cognitive Functions Scale. In C. S. Lidz & J. G.Google Scholar

  • Elliott (Eds.), Dynamic Assessment: Prevailing models and applications. Amsterdam: JAI/Elsevier Science.Google Scholar

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.Google Scholar

  • Mackey, A. P., Hill, S. S., Stone, S. I., & Bunge, S. A. (2011). Dissociable effects of reasoning and speed training in children. Developmental Science, 14(3), 582-590.CrossrefGoogle Scholar

  • MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York: Erlbaum.Google Scholar

  • McCandliss, B., Beck, I. L., Sandak, R., & Perfetti, C. (2003). Focusing attention on decoding for children with poor reading skills: Design and preliminary tests of the word building intervention. Scientific Studies of Reading, 7(1), 75-104.CrossrefGoogle Scholar

  • Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 49(3), 277-296.CrossrefPubMedGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.PubMedCrossrefGoogle Scholar

  • Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neuroscience, 17(2), 75-79.Google Scholar

  • Primi, R., Ferrão, M. E., & Almeida, L. S. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446-451.Google Scholar

  • Resing, W. C. M. (2013). Dynamic testing and individualized instruction: Helpful in cognitive education? Journal of Cognitive Education and Psychology, 12(1), 81-95.Google Scholar

  • Resing, W. C. M., Stevenson, C., & Bosma, T. (2012). Dynamic testing: Measuring inductive reasoning in children with developmental disabilities and mild cognitive impairments. Journal of Cognitive Education and Psychology, 11(2), 159-178.Google Scholar

  • Ropovik, I. (2014). Do executive functions predict the ability to learn problem-solving principles? Intelligence, 44, 64-74.CrossrefGoogle Scholar

  • Schweizer, K. (2010). The relationship of attention and intelligence. In A. Gruszka, G. Matthiews, & B. Szymura (Eds.), Handbook of individual differences in cognition: Attention, memory, and executive control (pp. 247-262). New York: Springer.Google Scholar

  • Sergi, M. J., Kern, R. S., Mintz, J., & Green, M. F. (2005). Learning potential and the prediction of work skill acquisition in schizophrenia. Schizophrenia Bulletin, 31(1), 67-72.PubMedCrossrefGoogle Scholar

  • Spearman, C. (1904). “General Intelligence,” objectively determined and measured.Google Scholar

  • Stanovich, K. E., Cunningham, A. E., & Freeman, D. (1984). Intelligence, cognitive skills and early reading progress. Reading Research Quarterly, 14, 278-303.CrossrefGoogle Scholar

  • Stauffer, J. M., Ree, M. J., & Caretta, T. R. (1996). Cognitive-components tests are not much more than g: An extension of Kyllonen’s analysis. Journal of General Psychology, 123, 193-205.Google Scholar

  • Sternberg, R. J., & Grigorenko, E. L. (2002). Dynamic testing: The nature and measurement of learning potential. New York, NY: Cambridge University Press.Google Scholar

  • Sternberg, R. J., Grigorenko, E. L., Birney, D. P., Fredine, N., Jarvin, L., & Jeltova, I. (2007). Dynamic instruction for and assessment of developing expertise in four ethnic groups. In E. J. Gubbins (Ed.), Research Monograph of the National Research Center on the Gifted and Talented. University of Connecticut. Stevenson C. E. (2012). Puzzling with potential. Dynamic testing of analogical reasoning in children (Doctoral dissertation, Leiden University). Amsterdam, the Netherlands: Ipskamp Drukkerij.Google Scholar

  • Stevenson, C. E., Hickendorff, M., Resing, W. C. M., Heiser, W., & de Boeck, P. (2013). Explanatory item response modeling of children’s change on a dynamic test of analogical reasoning. Intelligence, 41(3), 157-168.CrossrefGoogle Scholar

  • Swanson, H. L. & Howard, C. B. (2005). Children with reading disabilities: Does dynamic assessment help in the classification? Learning Disability Quarterly, 28(1), 17-34.CrossrefGoogle Scholar

  • Swanson, H. L., & Lussier, C. M. (2001). A selective synthesis of the experimental literature on dynamic assessment. Review of Educational Research, 71(2), 321-363.CrossrefGoogle Scholar

  • Taub, G., Floyd, R. G., Keith, T. Z., & McGrew, K. S. (2008). Effects of general and broad cognitive abilities on mathematics. School Psychology Quarterly, 23(2), 187-198.CrossrefGoogle Scholar

  • Taylor, T. R. (1992). Beyond competence: Measuring potential in a cross-cultural situation fairly. Potential in psychometrics. In Congress on psychometrics for psychologists. Megawatt Park, Sandton: Eskom and the Society of Industrial Psychology of South Africa.Google Scholar

  • Tillman, C. M., Nyberg, L., & Bohlin, G. (2008). Working memory components and intelligence in children. Intelligence, 36(5), 394-402.CrossrefGoogle Scholar

  • Tzuriel, D. (2000). Dynamic assessment of young children: Educational and intervention perspectives. Educational Psychology Review, 12(4), 385-435.CrossrefGoogle Scholar

  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104-132.CrossrefPubMedGoogle Scholar

  • Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention, memory, or both? A direct test of the Dual-Component Model. Journal of Memory and Language, 62, 392-406.Google Scholar

  • Vygotsky, L. S. (1962). Thought and language. Cambridge MA: MIT Press.Google Scholar

  • West, R., Alain, C. (2000). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 873(1), 102-111.PubMedCrossrefGoogle Scholar

  • Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108(3), 436-452.CrossrefGoogle Scholar

  • Wiedl, K. H. (1999). Cognitive modifiability as a measure of readiness for rehabilitation. Psychiatric Services, 50(11), 1411-1413.CrossrefGoogle Scholar

  • Wiedl, K. H. (2003). Dynamic testing: A comprehensive model and current fields of application. Journal of Cognitive Education and Psychology, 3(2), 93-119. journalofpedagogy1/2015Google Scholar

  • Wiedl, K. H., Schottke, H. H., & Calero-Garcia, D. (2001). Dynamic assessment of cognitive rehabilitation potential in schizophrenic persons and in elderly persons with and without dementia. European Journal of Psychological Assessment, 17(2), 112-117.CrossrefGoogle Scholar

  • Wiedl, K. H., & Wienobst, J. (1999). Interindividual differences in cognitive remediation research with schizophrenic patients: Indicators of rehabilitation potential? International Journal of Rehabilitation Research, 22(1), 55-59.CrossrefGoogle Scholar

About the article

Published Online: 2015-07-24

Published in Print: 2015-06-01


Citation Information: Journal of Pedagogy, ISSN (Online) 1338-2144, DOI: https://doi.org/10.1515/jped-2015-0002.

Export Citation

© by Marta Filičková. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in