Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Ogata, Tsutomu / Toppari, Jorma

12 Issues per year


IMPACT FACTOR 2017: 1.086

CiteScore 2017: 1.07

SCImago Journal Rank (SJR) 2017: 0.465
Source Normalized Impact per Paper (SNIP) 2017: 0.580

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 26, Issue 11-12

Issues

Vitamin D status is associated with early markers of cardiovascular disease in prepubertal children

Benjamin U. Nwosu
  • Corresponding author
  • Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, MA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Louise Maranda
  • Department of Quantitative Health Sciences, University of Massachusetts Medical School, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karen Cullen
  • Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carol Ciccarelli
  • Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mary M. Lee
  • Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-02 | DOI: https://doi.org/10.1515/jpem-2013-0086

Abstract

Background: The associations of 25-hydroxyvitamin D [25(OH)D], non-high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL), and related markers of early cardiovascular disease (CVD) are unclear in prepubertal children.

Objective: To investigate the association of 25(OH)D with markers of CVD. The hypothesis was that 25(OH)D would vary inversely with non-HDL-C.

Subjects and methods: A prospective cross-sectional study of children (n=45; 26 males, 19 females) of mean age 8.3±2.5 years to investigate the relationships between 25(OH)D and glucose, insulin, high-sensitivity C-reactive protein, and lipids. Vitamin D deficiency was defined as 25(OH)D <20 ng/mL; overweight as body mass index (BMI) ≥85th but <95th percentile; and obesity as BMI >95th percentile.

Results: Twenty subjects (44.4%) had BMI <85%, and 25 had BMI of ≥85%. Eleven participants (24.4%) had 25(OH)D of <20 ng/mL, and 10 (22.2%) had 25(OH)D of >30 ng/mL. Patients with 25(OH)D of <20 ng/mL had significantly elevated non-HDL-C (136.08±44.66 vs. 109.88±28.25, p=0.025), total cholesterol (TC)/HDL ratio (3.89±1.20 vs. 3.21±0.83, p=0.042), and triglycerides (TG) (117.09±71.27 vs. 73.39±46.53, p=0.024), while those with 25(OH)D of >30 ng/mL had significantly lower non-HDL-C, TC/HDL, TG, and LDL (82.40±18.03 vs. 105.15±28.38, p=0.006). Multivariate analysis showed significant inverse correlations between 25(OH)D and non-HDL cholesterol (β=–0.337, p=0.043), and TC/HDL ratio (β=–0.339, p=0.028), and LDL (β=–0.359, p=0.016), after adjusting for age, race, sex, BMI, and seasonality.

Conclusions: Vitamin D varied inversely with non-HDL, TC/HDL, and LDL. A 25(OH)D level of 30 ng/mL is associated with optimal cardioprotection in children.

Keywords: cardiovascular disease; prepubertal children; vitamin D status

References

  • 1.

    Fiscella K, Franks P. Vitamin D, race, and cardiovascular mortality: findings from a national US sample. Ann Fam Med 2010;8:11–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes 2010;59:242–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 2008;168:1174–80.Google Scholar

  • 4.

    Giovannucci E. Vitamin D and cardiovascular disease. Curr Atheroscler Rep 2009;11:456–61.PubMedCrossrefGoogle Scholar

  • 5.

    Williams DM, Fraser A, Sayers A, Fraser WD, Hingorani A, et al. Associations of 25-hydroxyvitamin D2 and D3 with cardiovascular risk factors in childhood: cross-sectional findings from the Avon Longitudinal Study of Parents and Children. J Clin Endocrinol Metab 2012;97:1563–71.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Parikh S, Guo DH, Pollock NK, Petty K, Bhagatwala J, et al. Circulating 25-hydroxyvitamin D concentrations are correlated with cardiometabolic risk among American black and white adolescents living in a year-round sunny climate. Diabetes Care 2012;35:1133–8.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003;24:668–93.PubMedCrossrefGoogle Scholar

  • 8.

    Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004. Pediatrics 2009;124:e362–70.Web of ScienceGoogle Scholar

  • 9.

    Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. Am J Clin Nutr;94:225–33.Web of ScienceGoogle Scholar

  • 10.

    Reis JP, von Muhlen D, Miller ER, III, Michos ED, Appel LJ. Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics 2009;124:e371–9.Web of ScienceGoogle Scholar

  • 11.

    Rajakumar K, de las Heras J, Chen TC, Lee S, Holick MF, et al. Vitamin D status, adiposity, and lipids in black American and Caucasian children. J Clin Endocrinol Metab 2011;96:1560–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: summary report. Pediatrics 2011;128:S213–56.Google Scholar

  • 13.

    Hsia SH. Non-HDL cholesterol: into the spotlight. Diabetes Care 2003;26:240–2.CrossrefPubMedGoogle Scholar

  • 14.

    Srinivasan SR, Myers L, Berenson GS. Distribution and correlates of non-high-density lipoprotein cholesterol in children: the Bogalusa Heart Study. Pediatrics 2002;110:e29.Google Scholar

  • 15.

    Svoren BM, Volkening LK, Wood JR, Laffel LM. Significant vitamin D deficiency in youth with type 1 diabetes mellitus. J Pediatr 2009;154:132–4.CrossrefPubMedGoogle Scholar

  • 16.

    Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, et al. CDC growth charts: United States. Adv Data 2000:1–27.PubMedGoogle Scholar

  • 17.

    Sacheck J, Goodman E, Chui K, Chomitz V, Must A, et al. Vitamin D deficiency, adiposity, and cardiometabolic risk in urban schoolchildren. J Pediatr 2011; 159:945–50.Web of ScienceGoogle Scholar

  • 18.

    Ostergard M, Arnberg K, Michaelsen KF, Madsen AL, Krarup H, et al. Vitamin D status in infants: relation to nutrition and season. Eur J Clin Nutr 2011;65:657–60.CrossrefPubMedGoogle Scholar

  • 19.

    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911–30.CrossrefPubMedGoogle Scholar

  • 20.

    Must A, Strauss RS. Risks and consequences of childhood and adolescent obesity. Int J Obes Relat Metab Disord 1999;23:S2–11.CrossrefGoogle Scholar

  • 21.

    Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 1999;103:1175–82.Google Scholar

  • 22.

    Reilly JJ, Methven E, McDowell ZC, Hacking B, Alexander D, et al. Health consequences of obesity. Arch Dis Child 2003;88:748–52.PubMedCrossrefGoogle Scholar

  • 23.

    Codoner-Franch P, Tavarez-Alonso S, Simo-Jorda R, Laporta-Martin P, Carratala-Calvo A, et al. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatr 2012;161:848–54.Web of ScienceGoogle Scholar

  • 24.

    Newman TB, Pletcher MJ, Hulley SB. Overly aggressive new guidelines for lipid screening in children: evidence of a broken process. Pediatrics 2012;130:349–52.Google Scholar

  • 25.

    Saenger AK. Universal lipid screening in children and adolescents: a baby step toward primordial prevention? Clin Chem 2012;58:1179–81.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Kones R. Is prevention a fantasy, or the future of medicine? A panoramic view of recent data, status, and direction in cardiovascular prevention. Ther Adv Cardiovasc Dis 2011;5:61–81.PubMedCrossrefGoogle Scholar

  • 27.

    Bouchard C, Depres JP, Tremblay A. Exercise and obesity. Obes Res 1993;1:133–47.PubMedCrossrefGoogle Scholar

  • 28.

    Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 2004;79:820–25.PubMedGoogle Scholar

  • 29.

    Inomata S, Kadowaki S, Yamatani T, Fukase M, Fujita T. Effect of 1 alpha (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Miner 1986;1:187–92.PubMedGoogle Scholar

  • 30.

    Berge KE, Tian H, Graf GA, Yu L, Grishin NV, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000;290:1771–5.Google Scholar

  • 31.

    McGill AT, Stewart JM, Lithander FE, Strik CM, Poppitt SD. Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity. Nutr J 2008;7:4.CrossrefPubMedGoogle Scholar

  • 32.

    Toprak A, Kandavar R, Toprak D, Chen W, Srinivasan S, et al. C-Reactive protein is an independent predictor for carotid artery intima-media thickness progression in asymptomatic younger adults (from the Bogalusa Heart Study). BMC Cardiovasc Disord 2011;11:78–86.Web of ScienceCrossrefPubMedGoogle Scholar

  • 33.

    Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, et al. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000;20:2094–9.PubMedCrossrefGoogle Scholar

  • 34.

    Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, et al. C-Reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation 2003;107:1783–90.Google Scholar

  • 35.

    Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165–8.CrossrefPubMedGoogle Scholar

  • 36.

    Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res 2004;95:877–83.CrossrefGoogle Scholar

  • 37.

    Johnson HM, Douglas PS, Srinivasan SR, Bond MG, Tang R, et al. Predictors of carotid intima-media thickness progression in young adults: the Bogalusa Heart Study. Stroke 2007;38:900–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • 38.

    Stensland-Bugge E, Bonaa KH, Joakimsen O, Njolstad I. Sex differences in the relationship of risk factors to subclinical carotid atherosclerosis measured 15 years later: the Tromso study. Stroke 2000;31:574–81.CrossrefGoogle Scholar

  • 39.

    Margolis KL, Martin LW, Ray RM, Kerby TJ, Allison MA, et al. A prospective study of serum 25-hydroxyvitamin D levels, blood pressure, and incident hypertension in postmenopausal women. Am J Epidemiol 2012;175:22–32.Google Scholar

  • 40.

    Larsen T, Mose FH, Bech JN, Hansen AB, Pedersen EB. Effect of cholecalciferol supplementation during winter months in patients with hypertension: a randomized, placebo-controlled trial. Am J Hypertens 2012;25:1215–22.PubMedCrossrefGoogle Scholar

  • 41.

    Resnick LM, Muller FB, Laragh JH. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. Ann Intern Med 1986;105:649–54.PubMedCrossrefGoogle Scholar

  • 42.

    Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, et al. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 2007;49:1063–9.CrossrefGoogle Scholar

  • 43.

    Sugden JA, Davies JI, Witham MD, Morris AD, Struthers AD. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabet Med 2008;25:320–5.CrossrefGoogle Scholar

  • 44.

    Wuerzner G, Burnier M, Waeber B. Should hypertensive patients take vitamin D? Curr Hypertens Rep 2012;14:318–23.CrossrefPubMedGoogle Scholar

  • 45.

    Potenza MV, Mechanick JI. The metabolic syndrome: definition, global impact, and pathophysiology. Nutr Clin Pract 2009;24:560–77.CrossrefPubMedGoogle Scholar

  • 46.

    Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition 2008;24:279–85.PubMedCrossrefGoogle Scholar

  • 47.

    Harkness L, Cromer B. Low levels of 25-hydroxy vitamin D are associated with elevated parathyroid hormone in healthy adolescent females. Osteoporos Int 2005;16:109–13.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Benjamin U. Nwosu, MD, Associate Professor, Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue N, Worcester, MA 01655, USA, Phone: +1 508-334-7872, Fax: +1 508-856-4287, E-mail:


Received: 2013-03-07

Accepted: 2013-06-03

Published Online: 2013-07-02

Published in Print: 2013-11-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 26, Issue 11-12, Pages 1067–1075, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2013-0086.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Md Jobayer Hossain, Alexa Levinson, Donald George, Jose Canas, Seema Kumar, and P Babu Balagopal
Metabolic Syndrome and Related Disorders, 2018, Volume 16, Number 4, Page 197
[2]
Marisa Censani, Hoda T. Hammad, Paul J. Christos, and Tiffany Schumaker
Global Pediatric Health, 2018, Volume 5, Page 2333794X1775177
[3]
Fatemeh Tavakoli, Kokab Namakin, and Mahmood Zardast
Iranian Journal of Pediatrics, 2016, Volume 26, Number 4
[4]
Valeria Hirschler, Gustavo Maccallini, Claudia Molinari, Urrutia Inés, Luis A. Castano, Milva Sanchez, Graciela Colque, Claudio Aranda, Mariana Hidalgo, and Mirta Urzagasti
Clinica Chimica Acta, 2014, Volume 429, Page 147

Comments (0)

Please log in or register to comment.
Log in