Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 26, Issue 7-8

Issues

Interaction of bone mineral density, adipokines and hormones in obese adolescents girls submitted in an interdisciplinary therapy

Raquel M.S. Campos / Marco Túlio de Mello / Lian Tock / Patrícia Leão da Silva / Flávia C. Corgosinho / June Carnier / Aline de Piano / Priscila L. Sanches / Deborah C.L. Masquio / Sergio Tufik / Ana R. Dâmaso
  • Corresponding author
  • Post Graduate Program of Nutrition, Universidade Federal de São Paulo, Brazil
  • Department of Biosciences, Universidade Federal de São Paulo. Av. D. Ana Costa, 95 – Vl. Mathias – Santos/SP – CEP: 11060-001, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-22 | DOI: https://doi.org/10.1515/jpem-2012-0336

Abstract

Obesity is a chronic inflammatory condition with numerous metabolic consequences to the organism, highlighting its influence on bone mass. Therefore, the aim of this study was to verify the role of visceral fat, leptin, adiponectin and ghrelin on bone mineral density in obese post-puberty adolescents girls, submitted to an interdisciplinary therapy. The study involved 20 post-puberty obese adolescent girls: 16±1.5 years of age, 98.9±15.8 kg (weight), 1.60±0.72 m (height) and 37.2±4.8 kg/m2 [body mass index (BMI)]. Anthropometric measurements, body composition, visceral fat, subcutaneous fat, bone mineral density and content were determined. Ghrelin, leptin and adiponectin were analyzed and the leptin/adiponectin ratio was calculated. Our findings showed a significant increase in adiponectin concentration and a reduction in body weight, BMI, total fat mass, visceral and subcutaneous fat. In addition, ghrelin (r2=–0.53; p=0.02) visceral fat (r2=–0.46, p=0.04) (r2 –0.66, p=0.001) and leptin/adiponectin ratio (r2 –0.56, p=0.01) were negative predictors for bone mineral density and content in obese adolescent girls, respectively. It provides a novel physiologically concept that may shed light on the etiology of osteoporosis and help to identify new therapeutic targets. However this should be confirmed in a large cohort study.

Keywords: adipokines; adolescents; bone mineral density; hormone; obesity

References

  • 1.

    Silva DA, Pelegrini A, de Lima E Silva JM, Petroski EL. Epidemiology of whole body, peripheral, and central adiposity in adolescents from a Brazilian state capital. Eur J Pediatr. 2011;170:1541–50.Web of ScienceGoogle Scholar

  • 2.

    Branca FN, Lobstein T. The challenge of Obesity in the WHO European Region and the Strategies for Response. Copenhagen: WHO Regional Office for Europe, 2007.Google Scholar

  • 3.

    Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 2008;16:2323–30.Web of ScienceCrossrefGoogle Scholar

  • 4.

    Instituto Brasileiro de Geografia e Estatística. POF 2008–2009. Antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil 2010. Acess: http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1699&id_pagina=1. 16 January 2013.

  • 5.

    Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, et al. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 2005;37: 474–81.Google Scholar

  • 6.

    Hardy R, Cooper MS. Bone loss in inflammatory disorders. J Endocrinol 2009;201:309–20.Google Scholar

  • 7.

    Silva CC, Goldberg TB, Teixeira AS, Dalmas JC. Bone mineralization among male adolescents: critical years for bone mass gain. J Pediatr 2004;80:461–7.Google Scholar

  • 8.

    Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993;8:567–73.Google Scholar

  • 9.

    Cao YL, Wang YX, Wang DF, Meng X, Zhang J. Correlation between omental TNF-alpha protein and plasma PAI-1 in obesity subjects. Int J Cardiol 2008;128:99–405.Web of ScienceGoogle Scholar

  • 10.

    Trayhurn P, Wood IS. Signaling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005;33:1078–81.Google Scholar

  • 11.

    Cao YL, Hu CZ, Meng X, Wang DF, Zhang J. Expression of TNF alpha protein in omental and subcutaneous adipose tissue in obesity. Diabetes Res Clin Pract 2008;79:214–9.Google Scholar

  • 12.

    Bandeira F, Lazaretti-Castro M, Bilezikian JP. Hormones and bone. Arq Bras Endocrinol Metab 2010;54:85–6.Google Scholar

  • 13.

    Campos RM, Lazaretti-Castro M, Mello MT, Tock L, Silva PL, et al. Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol 2012;56:12–8.PubMedGoogle Scholar

  • 14.

    Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005;331:520–6.Google Scholar

  • 15.

    Do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, et al. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab 2009;27:613–9.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 2002;109:915–21.Google Scholar

  • 17.

    Campos RM, de Piano A, da Silva PL, Carnier J, Sanches PL, et al. The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of long-term interdisciplinary therapy. Endocrine 2012;42:146–56.Web of ScienceGoogle Scholar

  • 18.

    Makovey J, Naganathan V, Seibel M, Sambrook P. Gender differences in plasma ghrelin and its relations to body composition and bone – an opposite-sex twin study. Clin Endocrinol (Oxf) 2007;66:530–7.Web of ScienceGoogle Scholar

  • 19.

    Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, et al. Relationships of acylated and des-acyl ghrelin levels to bonemineralization in obese children and adolescents. Bone 2009;45:274–9.Web of ScienceGoogle Scholar

  • 20.

    Kos K, Harte AL, O’Hare PJ, Kumar S, McTernan PG. Ghrelin and the differential regulation of des-acyl (DSG) and oct-anoyl ghrelin (OTG) in human adipose tissue (AT). Clin Endocrinol (Oxf) 2009;70:383–9.Google Scholar

  • 21.

    Delhanty PJ, van der Eerden BC, van der Velde M, Gauna C, Pols HA, et al. Ghrelin and unacylated ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a. J Endocrinol 2006;188:37–47.Google Scholar

  • 22.

    Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23:279–302.CrossrefGoogle Scholar

  • 23.

    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 2010;95:1247–55.Web of ScienceGoogle Scholar

  • 24.

    Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000;289:1501–4.Google Scholar

  • 25.

    Morberg CM, Tetens I, Black E, Toubro S, Soerensen TI, et al. Leptin and bone mineral density: a cross-sectional study in obese and nonobese men. J Clin Endocrinol Metab 2003;88:5795–800.Google Scholar

  • 26.

    Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010;299:E506–15.Google Scholar

  • 27.

    Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360:57–8.Google Scholar

  • 28.

    Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, et al. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 2003;26:3226–9.PubMedCrossrefGoogle Scholar

  • 29.

    Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. J Am Med Assoc 2008;302:179–88.Web of ScienceGoogle Scholar

  • 30.

    Rocha VZ, Folco EJ. Inflammatory concepts of obesity. Int J Inflam 2011;3.CrossrefGoogle Scholar

  • 31.

    Brandao PP, Garcia-Souza EP, Neves FA, Pereira MJ, Sichieri R, et al. Leptin/adiponectin ratio in obese women with and without binge eating disorder. Neuro Endocrinol Lett 2010;31:353–8.PubMedGoogle Scholar

  • 32.

    Corgosinho FC, de Piano A, Sanches PL, Campos RM, Silva PL, et al. The role of PAI-1 and adiponectin on the inflammatory state and energy balance in obese adolescents with metabolic syndrome. Inflammation 2012;35:944–51.Web of ScienceGoogle Scholar

About the article

Corresponding authors: Raquel M.S. Campos, Post-Graduation Program of Nutrition, Universidade Federal de São Paulo. Rua Francisco de Castro 93, SP 04020-050, Brazil; and Ana R. Dâmaso, Department of Biosciences, Universidade Federal de São Paulo. Av. D. Ana Costa, 95 – Vl. Mathias – Santos/SP – CEP: 11060-001, Brazil, Tel.: (+55) 13 3878-3700


Received: 2012-08-30

Accepted: 2013-02-25

Published Online: 2013-04-22

Published in Print: 2013-08-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 26, Issue 7-8, Pages 663–668, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2012-0336.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joanna Gajewska, Jadwiga Ambroszkiewicz, Witold Klemarczyk, Magdalena Chełchowska, Halina Weker, and Katarzyna Szamotulska
Endocrine Research, 2017, Page 1
[2]
Elodie Chaplais, Geraldine Naughton, David Greene, Frederic Dutheil, Bruno Pereira, David Thivel, and Daniel Courteix
Journal of Bone and Mineral Metabolism, 2017
[3]
Sara A. Armaiz-Flores, Nichole R. Kelly, Ovidiu A. Galescu, Andrew P. Demidowich, Anne M. Altschul, Sheila M. Brady, Van S. Hubbard, Courtney K. Pickworth, Marian Tanofsky-Kraff, Lauren B. Shomaker, James C. Reynolds, and Jack A. Yanovski
Hormone Research in Paediatrics, 2017, Volume 87, Number 4, Page 233
[4]
Jennifer C. Kelley, Nicola Crabtree, and Babette S. Zemel
Calcified Tissue International, 2017, Volume 100, Number 5, Page 514
[5]
Joshua N. Farr and Paul Dimitri
Calcified Tissue International, 2017, Volume 100, Number 5, Page 500
[6]
Petra Kanioková Veselá, Radek Kaniok, and Milan Bayer
Journal of Pediatric Endocrinology and Metabolism, 2016, Volume 29, Number 1
[7]
Elodie Chaplais, David Thivel, David Greene, Frederic Dutheil, Pascale Duche, Geraldine Naughton, and Daniel Courteix
Journal of Bone and Mineral Metabolism, 2015, Volume 33, Number 6, Page 592
[8]
Morena Scotece, Javier Conde, Vanessa Abella, Verónica López, Jesús Pino, Francisca Lago, Juan J Gómez-Reino, and Oreste Gualillo
Expert Opinion on Drug Discovery, 2014, Volume 9, Number 8, Page 945

Comments (0)

Please log in or register to comment.
Log in