Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Feihong / Mericq, Veronica / Roth, Christian / Toppari, Jorma

Editorial Board Member: Battelino, Tadej / Buyukgebiz, Atilla / Cassorla, Fernando / Chrousos, George P. / Cutfield, Wayne / Fideleff, Hugo L. / Hershkovitz, Eli / Hiort, Olaf / LaFranchi, Stephen H. / Lanes M. D., Roberto / Mohn, Angelika / Root, Allen W. / Rosenfeld, Ron G. / Werther, George / Zadik, Zvi

12 Issues per year


IMPACT FACTOR 2016: 1.233

CiteScore 2016: 1.09

SCImago Journal Rank (SJR) 2016: 0.527
Source Normalized Impact per Paper (SNIP) 2016: 0.602

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 26, Issue 9-10 (Oct 2013)

Issues

Plasma ceramides are elevated in female children and adolescents with type 2 diabetes

Ximena Lopez
  • Corresponding author
  • University of Texas Southwestern, Pediatrics, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allison B. Goldfine / William L. Holland / Ruth Gordillo / Philipp E. Scherer
Published Online: 2013-04-24 | DOI: https://doi.org/10.1515/jpem-2012-0407

Abstract

Accumulation of ceramides within tissues induces insulin resistance. Moreover, adiponectin exerts its beneficial metabolic effects at least partially through ceramide catabolism. We hypothesized that specific plasma ceramide subspecies are elevated in obese children and adolescents with type 2 diabetes (T2D), and that they inversely correlate with adiponectin and measures of insulin sensitivity. This was a cross-sectional study. Participants included 14 obese female subjects with T2D, ages 10–17, and 14 lean healthy controls of the same age and gender. Fasting plasma ceramide subspecies were measured by quantitative tandem mass spectrometry. Subjects with T2D had higher concentrations of C22:0 and C20:0 ceramides, with a 2-fold increase in C18:0 ceramide and C24:1 dihydroceramide (p<0.05). C22:0, C20:0 and C18:0 ceramide correlated with decreased adiponectin concentrations, increased HOMA-IR, BMI Z-score, triglyceride and fasting blood glucose concentrations (p<0.05). Plasma levels of C18:0, C20:0 and C22:0 ceramide, as well as C24:1 dihydroceramide, were elevated in obese female children and adolescents with T2D. This may be a reflection of tissue insulin resistance and could be a result of low adiponectin levels.

Keywords: adolescents; ceramides; children; insulin resistance; obesity; type 2 diabetes

References

  • 1.

    Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008;29:381–402.Web of ScienceGoogle Scholar

  • 2.

    Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004;53:25–31.Google Scholar

  • 3.

    Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 2011;121:1858–70.Web of ScienceGoogle Scholar

  • 4.

    Schmitz-Peiffer C, Craig DL, Biden TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 1999;274:24202–10.Google Scholar

  • 5.

    Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 2011;17: 55–63.Web of ScienceGoogle Scholar

  • 6.

    Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009;58:337–43.Web of ScienceGoogle Scholar

  • 7.

    Błachnio-Zabielska AU, Pułka M, Baranowski M, Nikołajuk A, Zabielski P, et al. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J Cell Physiol 2012;227:550–7.Web of ScienceGoogle Scholar

  • 8.

    Majumdar I, Mastrandrea LD. Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine 2012;41:442–9.Web of ScienceGoogle Scholar

  • 9.

    Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007;5:167–79.Google Scholar

  • 10.

    Boini KM, Zhang C, Xia M, Poklis JL, Li PL. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharmacol Exp Ther 2010;334:839–46.Web of ScienceGoogle Scholar

  • 11.

    Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res 2009;48:196–205.Google Scholar

  • 12.

    Böttner A, Kratzsch J, Müller G, Kapellen TM, Blüher S, et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 2004;89:4053–61.Google Scholar

About the article

Corresponding author: Ximena Lopez, University of Texas Southwestern, Pediatrics, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA, Phone: +1-214-648-3501, Fax: +1-213-456-2940, E-mail:


Received: 2012-12-17

Accepted: 2013-02-18

Published Online: 2013-04-24

Published in Print: 2013-10-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2012-0407.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M J Leal-Witt, M Ramon-Krauel, S Samino, M Llobet, D Cuadras, J C Jimenez-Chillaron, O Yanes, and C Lerin
International Journal of Obesity, 2017
[2]
Tzu-Chieh Chen, Daniel I. Benjamin, Taiyi Kuo, Rebecca A. Lee, Mei-Lan Li, Darryl J. Mar, Damian E. Costello, Daniel K. Nomura, and Jen-Chywan Wang
Science Signaling, 2017, Volume 10, Number 489, Page eaai7905
[3]
Monowarul Mobin Siddique, Ying Li, Bhagirath Chaurasia, Vincent A. Kaddai, and Scott A. Summers
Journal of Biological Chemistry, 2015, Volume 290, Number 25, Page 15371
[4]
Kevin Huynh, Ralph N. Martins, and Peter J. Meikle
Journal of Alzheimer's Disease, 2017, Volume 59, Number 2, Page 433
[5]
Jorge Maldonado-Hernández, Gabriela E. Saldaña-Dávila, Mónica I. Piña-Aguero, Benjamín A. Núñez-García, and Mardia G. López-Alarcón
Canadian Journal of Gastroenterology and Hepatology, 2017, Volume 2017, Page 1
[6]
William L. Holland and Philipp E. Scherer
Nature, 2017, Volume 544, Number 7648, Page 42
[7]
Nahed El-Najjar, Evelyn Orsó, Stefan Wallner, Gerhard Liebisch, Gerd Schmitz, and Ashley Cowart
PLOS ONE, 2015, Volume 10, Number 10, Page e0140683
[8]
Hanna Myśliwiec, Anna Baran, Ewa Harasim-Symbor, Barbara Choromańska, Piotr Myśliwiec, Anna Justyna Milewska, Adrian Chabowski, and Iwona Flisiak
Archives of Dermatological Research, 2017, Volume 309, Number 2, Page 79
[9]
Rolando I. Castillo, Leonel E. Rojo, Marcela Henriquez-Henriquez, Hernán Silva, Alejandro Maturana, María J. Villar, Manuel Fuentes, and Pablo A. Gaspar
Frontiers in Neuroscience, 2016, Volume 10
[10]
Peter J. Meikle and Scott A. Summers
Nature Reviews Endocrinology, 2016, Volume 13, Number 2, Page 79
[11]
Edward H. Schuchman
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2016, Volume 1862, Number 9, Page 1459
[12]
Romy Kursawe, Vishwa D. Dixit, Philipp E. Scherer, Nicola Santoro, Deepak Narayan, Ruth Gordillo, Cosimo Giannini, Ximena Lopez, Bridget Pierpont, Jessica Nouws, Gerald I. Shulman, and Sonia Caprio
Diabetes, 2016, Volume 65, Number 3, Page 610
[13]
Philip M. Sobolesky, Tyler S. Harrell, Celeste Parry, Stephanie Venn-Watson, and Michael G. Janech
Frontiers in Endocrinology, 2016, Volume 7
[14]
Scott A. Summers and Bret H. Goodpaster
The Journal of Physiology, 2016, Volume 594, Number 12, Page 3167
[15]
Michelle M. Mielke, Veera Venkata Ratnam Bandaru, Dingfen Han, Yang An, Susan M. Resnick, Luigi Ferrucci, and Norman J. Haughey
Aging Cell, 2015, Volume 14, Number 6, Page 1014
[16]
Jeremy T. Warshauer, Ximena Lopez, Ruth Gordillo, Jessica Hicks, William L. Holland, Estelle Anuwe, Martin B. Blankfard, Philipp E. Scherer, and Ildiko Lingvay
Diabetes/Metabolism Research and Reviews, 2015, Volume 31, Number 7, Page 734
[17]
Takhar Kasumov, Thomas P.J. Solomon, Calvin Hwang, Hazel Huang, Jacob M. Haus, Renliang Zhang, and John P. Kirwan
Obesity, 2015, Volume 23, Number 7, Page 1414
[18]
Chongben Zhang, Eric L Klett, and Rosalind A Coleman
Clinical Lipidology, 2013, Volume 8, Number 6, Page 659
[19]
William L. Holland, Andrew C. Adams, Joseph T. Brozinick, Hai H. Bui, Yukiko Miyauchi, Christine M. Kusminski, Steven M. Bauer, Mark Wade, Esha Singhal, Christine C. Cheng, Katherine Volk, Ming-Shang Kuo, Ruth Gordillo, Alexei Kharitonenkov, and Philipp E. Scherer
Cell Metabolism, 2013, Volume 17, Number 5, Page 790

Comments (0)

Please log in or register to comment.
Log in