Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 29, Issue 1

Issues

Evaluation of the tshr gene reveals polymorphisms associated with typical symptoms in primary congenital hypothyroidism

Erik Artur Cortinhas Alves
  • Corresponding author
  • Department of Morphology and Physiological Sciences of Pará State University, Belém/PA, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raissa Coelho Andrade
  • Inborn Errors of Metabolism Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém/PA, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Eduardo de Melo Amaral
  • Inborn Errors of Metabolism Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém/PA, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milena Coelho Fernandes Caldato / Adriana Maria Rocha Bastos / Luiz Carlos Santana da Silva
  • Inborn Errors of Metabolism Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém/PA, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-10 | DOI: https://doi.org/10.1515/jpem-2015-0130

Abstract

Primary congenital hypothyroidism (PCH) has an incidence of approximately 1 in each 3000–4000 live births. In the last two decades, nearly 50 types of the distinct inactivating mutations have already been described in the coding region of the tshr gene. The aim of present study was to investigate tshr gene mutations in patients with primary congenital hypothyroidism, analyzing a sample of 106 patients that were diagnosed with PCH. Genomic DNA was isolated from peripheral blood samples, and 10 exons from the TSH receptor were automatically sequenced. Five nucleotide alterations (P52T, N187N, A459A, L645L, and D727E. N187N and D727E polymorphisms) were associated with positive medical history. In view of the clinical, biochemical and molecular heterogeneity of the etiology of the PCH, the study of polymorphisms is critical for investigating the possible associations with prevailing symptoms of this disorder.

Keywords: congenital hypothyroidism; polymorphisms; thyroid dysgenesis; thyroid-stimulating hormone receptor (TSHR)

References

  • 1.

    Ramos HE, Nesi-Franca S, Boldarine VT, Pereira RM, Chiamolera MI, et al. Clinical and molecular analysis of thyroid hypoplasia: a population-based approach in southern Brazil. Thyroid 2009; 19(Suppl 1):61–8.Web of ScienceGoogle Scholar

  • 2.

    Fagman H, Nilsson M. Morphogenetics of early thyroid development. J Mol Endocrinol 2011;46(Suppl 1):R33–42.Web of ScienceGoogle Scholar

  • 3.

    Baş VN, Cangul H, Agladioglu SY, Kendall M, Cetinkaya S, et al. Mild and severe congenital primary hypothyroidism in two patients by thyrotropin receptor (TSHR) gene mutation. J Pediatr Endocrinol Metab 2012;25(Suppl 11–12):1153–6.Web of ScienceGoogle Scholar

  • 4.

    Cassio A, Nicoletti A, Rizzello A, Zazzetta E, Bal M, et al. Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J Clin Res Pediatr Endocrinol 2013;5(Suppl 1):29–39.Web of ScienceGoogle Scholar

  • 5.

    Carré A, Castanet M, Sura-Trueba S, Szinnai G, Van Vliet G, et al. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum Genet 2007;122(Suppl 5):467–76.Web of ScienceGoogle Scholar

  • 6.

    Moia S1, Godi M, Walker GE, Roccio M, Agretti P, et al. The W520X mutation in the TSHR gene brings on subclinical hypothyroidism through an haploinsufficiency mechanism. J Endocrinol Invest 2013;36(Suppl 9):716–21.Web of ScienceGoogle Scholar

  • 7.

    Carvalho A, Hermanns P, Rodrigues AL, Sousa I, Anselmo J, et al. A new PAX8 mutation causing congenital hypothyroidism in three generations of a family is associated with abnormalities in the urogenital tract. Thyroid 2013;23(Suppl 9):1074–8.Web of ScienceGoogle Scholar

  • 8.

    Williamson S, Kirkpatrick M, Greene S, Goudie D. A novel mutation of nkx2-1 affecting 2 generations with hypothyroidism and choreoathetosis: part of the spectrum of brain-thyroid-lung syndrome. J Child Neurol 2014;29(Suppl 5):666–9.CrossrefGoogle Scholar

  • 9.

    Cangul H, Morgan NV, Forman JR, Saglam H, Aycan Z, et al. Novel TSHR mutations in consanguineous families with congenital nongoitrous hypothyroidism. Clin Endocrinol (Oxf) 2010;73(Suppl 5):671–7.Web of ScienceGoogle Scholar

  • 10.

    Alves EA, Cruz CM, Pimentel CP, Ribeiro RC, Santos AK, et al. High frequency of D727E polymorphisms in exon 10 of the TSHR gene in Brazilian patients with congenital hypothyroidism. J Pediatr Endocrinol Metab 2010;23(Suppl 12):1321–8.Web of ScienceGoogle Scholar

  • 11.

    Ho SC, Goh SS, Khoo DH. Association of Graves’ disease with intragenic polymorphism of the thyrotropin receptor gene in a cohort of Singapore patients of multi-ethnic origins. Thyroid 2003;13(Suppl 6):523–8.Google Scholar

  • 12.

    Palos F, Perez O, Alvarez-Iglesias V, Cameselle J, Barreiro F, et al. Study of the prevalence and mechanisms of action of TSH receptor and Gs protein alpha-subunit mutations, in toxic multinodular goiter and toxic adenoma from Galicia (Spain). Endocrine Abstracts, 11, 809.Google Scholar

  • 13.

    Tonacchera M, Cetani F, Costagliola S, Van Sande J, Refetoff S, et al. Functional characteristics of a variant thyrotropin receptor. Eur J Biochem 1996;238(Suppl 2):490–4.Google Scholar

  • 14.

    Kotsa KD, Watson PF, Weetman AP. No association between a thyrotropin receptor gene polymorphism and Graves’ disease in the female population. Thyroid 1997;7(Suppl 1):31–3.Google Scholar

  • 15.

    Allahabadia A, Heward JM, Mijovic C, Carr-Smith J, Daykin J, et al. Lack of association between polymorphism of the thyrotropin receptor gene and Graves’ disease in United Kingdom and Hong Kong Chinese patients: case control and family-based studies. Thyroid 1998;8(Suppl 9):777–80.CrossrefGoogle Scholar

  • 16.

    Sunthornthepvarakul T, Kitvitayasak S, Ngowngarmaratana S, Konthong P, Deerochanawong C, et al. Lack of association between a polymorphism of human thyrotropin receptor gene and autoimmune thyroid disease. J Med Assoc Thai 1999;82(Suppl 12):1214–9.Google Scholar

  • 17.

    Simanainen J, Kinch A, Westermark K, Winsa B, Bengtsson M, et al. Analysis of mutations in exon 1 of the human thyrotropin receptor gene: high frequency of the D36H and P52T polymorphic variants. Thyroid 1999;9(Suppl 1):7–11.Google Scholar

  • 18.

    Kaczur V, Takács M, Szalai C, Falus A, Nagy Z, et al. Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012-1704) of the TSH receptor gene in Graves’ disease. Eur J Immunogenet 2000;27(Suppl 1):17–23.Google Scholar

  • 19.

    Chou HT, Shi YR, Chang CT, Tsai FJ.The polymorphisms of codon 727 and 52 of thyroid-stimulating hormone receptor gene are not associated with mitral valve prolapse syndrome in Taiwan Chinese. Jpn Heart J 2002;43:655–66.Google Scholar

  • 20.

    Esperante SA, Rivolta CM, Caputo M, González-Sarmiento R, Targovnik HM. Identification and characterization of new variants of three associated SNPs and a microsatellite in the TSH receptor gene which are useful for genetic studies. Mol Cell Probes 2008;22(Suppl 5–6):281–6.Google Scholar

  • 21.

    Yuan ZF, Mao HQ, Luo YF, Wu YD, Shen Z, et al. Thyrotropin receptor and thyroid transcription factor-1 genes variant in Chinese children with congenital hypothyroidism. Endocr J 2008;55(Suppl 2):415–23.Web of ScienceCrossrefGoogle Scholar

  • 22.

    Ismail SI, Mahmoud IS, Al-Ardah M, Abdelnour A, Younes NA. Detection of combined genomic variants in a Jordanian family with familial nonautoimmune hyperthyroidism. J Genet 2009;88(Suppl 2):233–8.Google Scholar

  • 23.

    Lönn S, Bhatti P, Alexander BH, Pineda MA, Doody MM, et al. Papillary thyroid cancer and polymorphic variants in TSHR- and RET-related genes: a nested case-control study within a cohort of U.S. radiologic technologists. Cancer Epidemiol Biomarkers Prev 2007;16(Suppl 1):174–7.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, et al. Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J Clin Endocrinol Metab 1999;84(Suppl 9):3328–35.Google Scholar

  • 25.

    Sykiotis GP, Neumann S, Georgopoulos NA, Sgourou A, Papachatzopoulou A, et al. Functional significance of the thyrotropin receptor germline polymorphism D727E. Biochem Biophys Res Commun 2003;301(Suppl 4):1051–6.Google Scholar

  • 26.

    van der Deure WM, Appelhof BC, Peeters RP, Wiersinga WM, Wekking EM, et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin Endocrinol (Oxf) 2008;69(Suppl 5):804–11.Google Scholar

  • 27.

    Hansen PS, van der Deure WM, Peeters RP, Iachine I, Fenger M, et al. The impact of a TSH receptor gene polymorphism on thyroid-related phenotypes in a healthy Danish twin population. Clin Endocrinol (Oxf) 2007;66(Suppl 6):827–32.CrossrefGoogle Scholar

  • 28.

    Peeters RP, van der Deure WM, van den Beld AW, van Toor H, Lamberts SW, et al. The Asp727Glu polymorphism in the TSH receptor is associated with insulin resistance in healthy elderly men. Clin Endocrinol (Oxf) 2007;66(Suppl 6):808–15.Google Scholar

  • 29.

    Inoue N, Watanabe M, Katsumata Y, Hidaka Y, Iwatani Y. Different genotypes of a functional polymorphism of the TSHR gene are associated with the development and severity of Graves’ and Hashimoto’s diseases. Tissue Antigens 2013; 82(Suppl 4):288–90.Web of ScienceGoogle Scholar

  • 30.

    Bayram B, Sonmez R, Bozari S, Onlu H, Turkoglu Z, et al. The association between development and progression of multinodular goiter and thyroid-stimulating hormone receptor gene D727E and P52T polymorphisms. Genet Test Mol Biomarkers 2013;17(Suppl 2):109–14.Google Scholar

  • 31.

    Louwerens M, Appelhof BC, Verloop H, Medici M, Peeters RP, et al. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism. Eur J Endocrinol 2012;167(Suppl 6):809–15.Google Scholar

  • 32.

    Xie J, Pannain S, Pohlenz J, Weiss RE, Moltz K, et al. Resistance to thyrotropin (TSH) in three families is not associated with mutations in the TSH receptor or TSH. J Clin Endocrinol Metab 1997;82(Suppl 12):3933–40.Google Scholar

  • 33.

    Tonacchera M, Perri A, De Marco G, Agretti P, Banco ME, et al. Low prevalence of thyrotropin receptor mutations in a large series of subjects with sporadic and familial nonautoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 2004;89(Suppl 11):5787–93.Google Scholar

  • 34.

    Brust ES1, Beltrao CB, Chammas MC, Watanabe T, Sapienza MT, et al. Absence of mutations in PAX8, NKX2.5, and TSH receptor genes in patients with thyroid dysgenesis. Arq Bras Endocrinol Metabol 2012;56:173–7.Google Scholar

  • 35.

    Liu RD, Chen RX, Li WR, Huang YL, Li WH, et al. The Glu727 allele of thyroid stimulating hormone receptor gene is associated with osteoporosis. N Am J Med Sci 2012;4(Suppl 7):300–4.Google Scholar

About the article

Corresponding author: Erik Artur Cortinhas Alves, Department of Morphology and Physiological Sciences of Pará State University, Belém/PA, Brazil, CEP: 66810-080, Phone: +55-91-3201-8030; and Departamento de Morfologia e Ciências Fisiológicas da Universidade do Estado do Pará, Belém/PA, Brasil, E-mail:


Received: 2015-03-24

Accepted: 2015-08-03

Published Online: 2015-09-10

Published in Print: 2016-01-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 29, Issue 1, Pages 71–76, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2015-0130.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in