Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 29, Issue 5

Issues

Classification and clinical characterization of metabolically “healthy” obese children and adolescents

Liene Bervoets / Guy Massa
  • Corresponding author
  • Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
  • Department of Pediatrics, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-24 | DOI: https://doi.org/10.1515/jpem-2015-0395

Abstract

Background: Some obese children do not show cardiometabolic complications such as prediabetes, dyslipidemia or insulin resistance. The objective of the study was to classify obese children and adolescents as metabolically “healthy” obese (MHO) on the basis of three different definitions, and to compare cardiometabolic features with metabolically unhealthy obese (MUO) children and adolescents.

Methods: The study included 156 obese children and adolescents aged between 10 and 18. Subjects were classified as MHO or MUO using three definitions based on the: (1) pediatric International Diabetes Federation (IDF) criteria; (2) homeostatic model assessment of insulin resistance (HOMA-IR); (3) combination of the previous two definitions. Cardiometabolic features were compared between MHO and MUO subjects.

Results: Six to 19% obese children and adolescents were classified as MHO, and showed a better insulin sensitivity, lower prevalence of prediabetes, lower triglycerides and lower triglyceride-to-HDL-C ratio compared to MUO.

Conclusions: Less than 20% obese children and adolescents are identified as MHO and show a healthier cardiometabolic profile as compared to MUO. Implementation of the proposed classifications in future clinical research could contribute towards the standardization of the MHO definition and offer new insights into the manifestation of the pediatric MHO phenotype.

Keywords: adolescents; children; insulin resistance; metabolic syndrome; obesity

References

  • 1.

    Olds T, Maher C, Zumin S, Péneau S, Lioret S, et al. Evidence that the prevalence of childhood overweight is plateauing: data from nine countries. Int J Pediatr Obes 2011;6:342–60.Google Scholar

  • 2.

    Pigeot I, Barba G, Chadjigeorgiou C, De Henauw S, Kourides Y, et al. Prevalence and determinants of childhood overweight and obesity in European countries: pooled analysis of the existing surveys within the IDEFICS Consortium. Int J Obes 2009;33:1103–10.Google Scholar

  • 3.

    Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States, 1999–2012. JAMA Pediatr 2014;168:561–6.Web of ScienceGoogle Scholar

  • 4.

    Weiss R, Kaufman FR. Metabolic complications of childhood obesity: identifying and mitigating the risk. Diabetes Care 2008;31(Suppl 2):S310–6.Google Scholar

  • 5.

    Wiegand S, Maikowski U, Blankenstein O, Biebermann H, Tarnow P, et al. Type 2 diabetes and impaired glucose tolerance in European children and adolescents with obesity – a problem that is no longer restricted to minority groups. Eur J Endocrinol 2004;151:199–206.Google Scholar

  • 6.

    Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 2010;362:485–93.Google Scholar

  • 7.

    Mangge H, Zelzer S, Puerstner P, Schnedl WJ, Reeves G, et al. Uric acid best predicts metabolically unhealthy obesity with increased cardiovascular risk in youth and adults. Obesity 2013;21:E71–7.Web of ScienceGoogle Scholar

  • 8.

    Prince RL, Kuk JL, Ambler KA, Dhaliwal J, Ball GD. Predictors of metabolically healthy obesity in children. Diabetes Care 2014;37:1462–8.Web of ScienceGoogle Scholar

  • 9.

    Kiess W, Penke M, Sergeyev E, Neef M, Adler M, et al. Childhood obesity at the crossroads. J Pediatr Endocr Met 2015;28:481–4.Google Scholar

  • 10.

    Lipek T, Igel U, Gausche R, Kiess W, Grande G. Obesogenic environments: environmental approaches to obesity prevention. J Pediatr Endocr Met 2015;28:485–95.Google Scholar

  • 11.

    Blüher M. Are metabolically healthy obese individuals really healthy? Eur J Endocrinol 2014;171:R209–19.Web of ScienceGoogle Scholar

  • 12.

    Zimmet P, Alberti K, George MM, Kaufman F, Tajima N, et al. The metabolic sydrome in children and adolescents – an IDF consensus report. Pediatr Diabetes 2007;8:299–306.Google Scholar

  • 13.

    Kurtoglu S, Akin L, Kendirci M, Hatipoglu N, Elmali F, et al. The absence of insulin resistance in metabolic syndrome definition leads to underdiagnosing of metabolic risk in obese patients. Eur J Pediatr 2012;171:1331–7.Google Scholar

  • 14.

    Steinberger J, Kelly AS. Obesity, metabolic syndrome and type 2 diabetes. In: da Cruz EM, Ivy D, Jaggers J, editors. Pediatric and congenital cardiology, cardiac surgery and intensive care. Denver: Springer London, 2014:499–507.Google Scholar

  • 15.

    Cali AM, Dalla Man C, Cobelli C, Dziura J, Seyal A, et al. Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care 2009;32:456–61.Web of ScienceGoogle Scholar

  • 16.

    Eriksson J, Jousilahti P, Lindström J, Qiao Q, Tuomilehto J, et al. Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. Diabetologia 1999;42:647–54.Google Scholar

  • 17.

    Cole T, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 2012;7:284–94.Web of ScienceGoogle Scholar

  • 18.

    Tanner J. Normal growth and techniques of growth assessment. Clin Endocrinol Metab 1986;15:411–51.Google Scholar

  • 19.

    Bervoets L, Massa G. Defining morbid obesity in children based on BMI 40 at age 18 using the extended international (IOTF) cut-offs. Pediatr Obes 2014;9:e94–8.Google Scholar

  • 20.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502.Google Scholar

  • 21.

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37:S81–90.Web of ScienceGoogle Scholar

  • 22.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.Google Scholar

  • 23.

    Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005;115:500–3.Google Scholar

  • 24.

    Li S, Chen W, Srinivasan SR, Xu J, Berenson GS. Relation of childhood obesity/cardiometabolic phenotypes to adult cardiometabolic profile the Bogalusa Heart study. Am J Epidemiol 2012;176(Suppl 7):S142–9.Web of ScienceGoogle Scholar

  • 25.

    Vukovic R, Mitrovic K, Milenkovic T, Todorovic S, Soldatovic I, et al. Insulin-sensitive obese children display a favorable metabolic profile. Eur J Pediatr 2013;172:201–6.Web of ScienceGoogle Scholar

  • 26.

    Weghuber D, Zelzer S, Stelzer I, Paulmichl K, Kammerhofer D, et al. High risk vs. “metabolically healthy” phenotype in juvenile obesity-neck subcutaneous adipose tissue and serum uric acid are clinically relevant. Exp Clin Endocrinol Diabetes 2013;121:384–90.Web of ScienceGoogle Scholar

  • 27.

    Dvorak RV, DeNino WF, Ades PA, Poehlman ET. Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women. Diabetes 1999;48:2210–4.Google Scholar

  • 28.

    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362–74.Google Scholar

  • 29.

    Millan J, Pinto X, Munoz A, Zuniga M, Rubies-Prat J, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 2009;5:757–65.Google Scholar

  • 30.

    Giannini C, Santoro N, Caprio S, Kim G, Lartaud D, et al. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care 2011;34:1869–74.Web of ScienceGoogle Scholar

  • 31.

    Quijada Z, Paoli M, Zerpa Y, Camacho N, Cichetti R, et al. The triglyceride/HDL-cholesterol ratio as a marker of cardiovascular risk in obese children; association with traditional and emergent risk factors. Pediatr Diabetes 2008;9:464–71.Google Scholar

  • 32.

    Weiss R, Otvos JD, Sinnreich R, Miserez AR, Kark JD. The triglyceride to high-density lipoprotein-cholesterol ratio in adolescence and subsequent weight gain predict nuclear magnetic resonance–measured lipoprotein subclasses in adulthood. J Pediatr 2011;158:44–50.Web of ScienceGoogle Scholar

  • 33.

    Urbina EM, Khoury PR, McCoy CE, Dolan LM, Daniels SR, et al. Triglyceride to HDL-C ratio and increased arterial stiffness in children, adolescents, and young adults. Pediatrics 2013;131:e1082–90.Web of ScienceGoogle Scholar

  • 34.

    Rosner W. The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances. Endocr Rev 1990;11:80–91.Google Scholar

  • 35.

    Peter A, Kantartzis K, Machann J, Schick F, Staiger H, et al. Relationships of circulating sex hormone-binding globulin with metabolic traits in humans. Diabetes 2010;59:3167–73.Web of ScienceGoogle Scholar

  • 36.

    Gascon F, Valle M, Martos R, Ruz FJ, Rios R, et al. Sex hormone-binding globulin as a marker for hyperinsulinemia and/or insulin resistance in obese children. Eur J Endocrinol 2000;143:85–9.Google Scholar

  • 37.

    De Oya I, Schoppen S, Lasunción MA, Lopez-Simon L, Riestra P, et al. Sex hormone-binding globulin levels and metabolic syndrome and its features in adolescents. Pediatr Diabetes 2010;11:188–94.Google Scholar

  • 38.

    Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, et al. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care 2013;36:2388–94.Web of ScienceGoogle Scholar

About the article

Corresponding author: Prof. Dr. Guy Massa, Department of Pediatrics, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium, Phone: +32 11 30 89 80, Fax: +32 11 30 98 98, E-mail: ; and Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium


Received: 2015-10-04

Accepted: 2015-12-14

Published Online: 2016-02-24

Published in Print: 2016-05-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 29, Issue 5, Pages 553–560, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2015-0395.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nivea Fazanaro Marra, Maria Teresa Bechere Fernandes, Maria Edna Melo, Rodrigo Marques Cruz, and Beatriz Helena Tess
Acta Paediatrica, 2019, Volume 108, Number 7, Page 1295
[2]
Jean-Baptiste Roberge, Andraea Van Hulst, Tracie A. Barnett, Vicky Drapeau, Andrea Benedetti, Angelo Tremblay, and Mélanie Henderson
The Journal of Pediatrics, 2018
[3]
S. Damanhoury, A. S. Newton, M. Rashid, L. Hartling, J. L. S. Byrne, and G. D. C. Ball
Obesity Reviews, 2018
[4]
Jane Maria Remor, Wendell Arthur Lopes, João Carlos Locateli, Ronano Pereira Oliveira, Caroline Ferraz Simões, Carlos Andrés Lopera Barrero, and Nelson Nardo Junior
Nutrition, 2018
[5]
Lara Nasreddine, Hani Tamim, Aurelie Mailhac, and Fadia S. AlBuhairan
BMC Pediatrics, 2018, Volume 18, Number 1
[6]
[7]
Liene Bervoets, Guy Massa, Wanda Guedens, Gunter Reekmans, Jean-Paul Noben, and Peter Adriaensens
Future Science OA, 2018, Page FSO306
[9]
Lori M. Beccarelli, Rachel Erin Scherr, John W. Newman, Alison G. Borkowska, Ira J. Gray, Jessica D. Linnell, Carl L. Keen, and Heather M. Young
Journal of the American College of Nutrition, 2017, Page 1
[10]

Comments (0)

Please log in or register to comment.
Log in