Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Feihong / Mericq, Veronica / Roth, Christian / Toppari, Jorma

Editorial Board: Battelino, Tadej / Buyukgebiz, Atilla / Cassorla, Fernando / Chrousos, George P. / Cutfield, Wayne / Fideleff, Hugo L. / Hershkovitz, Eli / Hiort, Olaf / LaFranchi, Stephen H. / Lanes M. D., Roberto / Mohn, Angelika / Root, Allen W. / Rosenfeld, Ron G. / Werther, George / Zadik, Zvi

12 Issues per year


IMPACT FACTOR 2016: 1.233

CiteScore 2016: 1.09

SCImago Journal Rank (SJR) 2016: 0.527
Source Normalized Impact per Paper (SNIP) 2016: 0.602

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 29, Issue 8

Issues

Decreased undercarboxylated osteocalcin in children with type 2 diabetes mellitus

Junji Takaya
  • Corresponding author
  • Department of Pediatrics, Kawachi General Hospital, 1-31 Yokomakura, Higashi-Osaka, Osaka 578-0954, Japan
  • Department of Pediatrics, Kansai Medical University, Osaka, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuko Tanabe / Yuichi Kuroyanagi / Kazunari Kaneko
Published Online: 2016-07-06 | DOI: https://doi.org/10.1515/jpem-2015-0417

Abstract

Background:

Osteocalcin (OC) is a bone-specific protein secreted by osteoblasts and often used as a bone formation biomarker. OC undergoes post-translational carboxylation to yield carboxylated osteocalcin (Gla-OC) and undercarboxylated osteocalcin (uc-OC) molecules. The aim of this study was to explore the association between bone and glucose metabolism by evaluating OC, ionized cations, and markers of glucose metabolism in children with obesity and type 2 diabetes mellitus (DM2).

Methods:

The subjects were nine children with DM2 [six males, three females; age 15.7±4.1 years; duration of disease 3.2±1.2 years], 18 children with simple obesity [12 males, six females; age 12.6±4.1 years], and 12 controls [eight males, four females; age 12.3±3.2 years]. Serum Gla-OC and uc-OC levels were determined using an enzyme-linked immunosorbent assay (ELISA).

Results:

Patients with DM2 (0.65±0.46 ng/mL), but not with obesity (1.11±0.55 ng/mL), had lower uc-OC levels than controls (1.25±0.49 ng/mL). Serum uc-OC was negatively correlated with mean serum glucose levels (r=–0.447, p=0.013) and hemoglobin A1c (HbA1c) (r=–0.455, p=0.012) in all subjects. Serum Gla-OC was correlated with serum alkaline phosphatase (r=0.601, p<0.001) and inorganic phosphorus (r=0.686, p<0.001), yet negatively correlated with age (r=–0.383, p=0.030). Mean serum ionized magnesium was lower in DM2 subjects than in controls. Mean serum ionized calcium was higher in obese subjects than in controls. In all subjects, mean serum ionized magnesium was negatively correlated with mean serum glucose levels.

Conclusions:

Osteoblast-derived protein OC, especially uc-OC, may have a role in the pathophysiology of diabetes by being associated with blood glucose homeostasis.

Keywords: calcium; magnesium; obesity

References

  • 1.

    Weinreb M, Shinar D, Rodan GA. Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 1990;5:831–42.Google Scholar

  • 2.

    Booth SL. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol 2013;9:43–55.Web of ScienceGoogle Scholar

  • 3.

    Lee AJ, Hodges S, Eastell R. Measurement of osteocalcin. Ann Clin Biochem 2000;37:432–46.Google Scholar

  • 4.

    Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:990–1047.Google Scholar

  • 5.

    Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008;105:5266–70.Web of ScienceGoogle Scholar

  • 6.

    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456–69.Google Scholar

  • 7.

    Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One 2013;8:e57375.Web of ScienceGoogle Scholar

  • 8.

    Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 2014;69:68–79.Google Scholar

  • 9.

    Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010;142:309–19.Web of ScienceGoogle Scholar

  • 10.

    Pollock NK, Bernard PJ, Gower BA, Gundberg CM, Wenger K, et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J Clin Endocrinol Metab 2011;96:E1092–9.Web of ScienceGoogle Scholar

  • 11.

    Takaya J, Higashino H, Kobayashi Y. Intracellular magnesium and insulin resistance. Magnes Res 2004;17:126–36.Google Scholar

  • 12.

    Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 2007;458:40–7.Web of ScienceGoogle Scholar

  • 13.

    Sader MS, Legeros RZ, Soares GA. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci Mater Med 2009;20:521–7.Web of ScienceGoogle Scholar

  • 14.

    Wallach S. Effects of magnesium on skeletal metabolism. Magnes Trace Elem 1990;9:1–14.Google Scholar

  • 15.

    Alissa EM, Alnahdi WA, Alama N, Ferns GA. Serum osteocalcin is associated with dietary vitamin D, body weight and serum magnesium in postmenopausal women with and without significant coronary artery disease. Asia Pac J Clin Nutr 2014;23:246–55.Web of ScienceGoogle Scholar

  • 16.

    Takaya J, Higashino H, Kotera F, Kobayashi Y. Intracellular magnesium of platelets in children with diabetes and obesity. Metabolism 2003;52:468–71.Google Scholar

  • 17.

    Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, et al. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 1999;159:2151–9.Google Scholar

  • 18.

    Sales CH, Pedrosa Lde F. Magnesium and diabetes mellitus: their relationship. Clin Nutr 2006;25:554–62.Google Scholar

  • 19.

    Lopez-Ridaura R, Willett WC, Rimm EB, Liu S, Stampfer MJ, et al. Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care 2004;27:134–40.Google Scholar

  • 20.

    Celik N, Andiran N, Yimaz AE. The relationship between serum magnesium levels with childhood obesity and insulin resistance: a review of the literature. J Pediatr Endocrinol Metab 2011;24:675–8.Google Scholar

  • 21.

    American Diabetes Association Type 2 diabetes in children and adolescents. Pediatrics 2000;105:671–80.Google Scholar

  • 22.

    Kato N. Construction of BMI for age references for Japanese children from the 2000 national growth survey. J Japan Assoc Hum Auxol 2009;15:37–44.Google Scholar

  • 23.

    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 2011;22:187–94.Google Scholar

  • 24.

    Hwang YC, Jeong IK, Ahn KJ, Chung HY. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev 2009;25:768–72.Web of ScienceGoogle Scholar

  • 25.

    Diaz-Lopez A, Bullo M, Juanola-Falgarona M, Martinez-Gonzalez MA, Estruch R, et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab 2013;98:4524–31.Google Scholar

  • 26.

    Hu WW, Ke YH, He JW, Fu WZ, Liu YJ, et al. Serum osteocalcin levels are inversely associated with plasma glucose and body mass index in healthy Chinese women. Acta Pharmacol Sin 2014;35:1521–6.Web of ScienceGoogle Scholar

  • 27.

    Maggio AB, Ferrari S, Kraenzlin M, Marchand LM, Schwitzgebel V, et al. Decreased bone turnover in children and adolescents with well controlled type 1 diabetes. J Pediatr Endocrinol Metab 2010;23:697–707.Google Scholar

  • 28.

    Kirmani S, Atkinson EJ, Melton LJ 3rd, Riggs BL, Amin S, et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 2011;26:2212–6.Web of ScienceGoogle Scholar

  • 29.

    de Paula FJ, Horowitz MC, Rosen CJ. Novel insights into the relationship between diabetes and osteoporosis. Diabetes Metab Res Rev 2010;26:622–30.Web of ScienceGoogle Scholar

  • 30.

    Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes 2011;2:41–8.Google Scholar

  • 31.

    Matsuzaki H, Kjita Y, Miwa M. Effects of a high-calcium diet on serum insulin-like growth factor-1 levels in magnesium-deficient rats. Magnes Res 2012;25:126–30.Web of ScienceGoogle Scholar

  • 32.

    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 2010;95:1247–55.Web of ScienceGoogle Scholar

  • 33.

    Afghani A, Goran MI. The interrelationships between abdominal adiposity, leptin and bone mineral content in overweight Latino children. Horm Res 2009;72:82–7.Google Scholar

  • 34.

    Paula FJ, Rosen CJ. Obesity, diabetes mellitus and last but not least, osteoporosis. Arq Bras Endocrinol Metabol 2010;54:150–7.Google Scholar

  • 35.

    Li X, Guo Y, Yan W, Snyder MP, Li X. Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal. PLoS One. 2015;10:e0146152.Web of ScienceGoogle Scholar

  • 36.

    Ibanez L, Lopez-Bermejo A, Diaz M, Marcos MV, de Zegher F. Pubertal metformin therapy to reduce total, visceral, and hepatic adiposity. J Pediatr 2010;156:98–102.Google Scholar

  • 37.

    Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 2011;48:885–93.Web of ScienceGoogle Scholar

  • 38.

    Shao X, Cao X, Song G, Zhao Y, Shi B. Metformin rescues the MG63 osteoblasts against the effect of high glucose on proliferation. J Diabetes Res 2014;2014:453940.Web of ScienceGoogle Scholar

  • 39.

    Rubin MR, Manavalan JS, Agarwal S, McMahon DJ, Niho A, et al. Effects of rosiglitazone vs metformin on circulating osteoclast and osteogenic precursor cells in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 2014;99:E1933–42.Web of ScienceGoogle Scholar

  • 40.

    Jürimäe J, Lätt E, Mäestu J, Saar M, Purge P, et al. Osteocalcin is inversely associated with adiposity and leptin in adolescent boys. J Pediatr Endocrinol Metab 2015;28:571–7.Google Scholar

About the article

Corresponding author: Junji Takaya, MD, Department of Pediatrics, Kawachi General Hospital, 1-31 Yokomakura, Higashi-Osaka, Osaka 578-0954, Japan, Phone: +81-72-965-0731, Fax: +81-72-965-2022


Received: 2015-10-23

Accepted: 2016-04-27

Published Online: 2016-07-06

Published in Print: 2016-08-01


Author contributions: JT and KK conceived and designed the study and obtained funding. JT, YT, and YO collected and analyzed the data. YT and YK recruited patients. JT wrote the draft, with critical revision from all authors. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Part of this study was supported by a Grant-in-Aid for Scientific Research (C) from the Japanese Society for the Promotion of Science (No. 24591614).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 29, Issue 8, Pages 879–884, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2015-0417.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Valérie Le Doan and Valérie Marcil
médecine/sciences, 2017, Volume 33, Number 4, Page 417
[2]
Kelly Virecoulon Giudici, Joseph M. Kindler, Berdine R. Martin, Emma M. Laing, George P. McCabe, Linda D. McCabe, Dorothy B. Hausman, Lígia Araújo Martini, Richard D. Lewis, Connie M. Weaver, Munro Peacock, and Kathleen M. Hill Gallant
Nutrition & Metabolism, 2017, Volume 14, Number 1
[3]
Maria J Redondo, Beverly A Shirkey, Daniel W Fraga, A. Osama Gaber, and Omaima M Sabek
Pediatric Diabetes, 2017

Comments (0)

Please log in or register to comment.
Log in