Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 31, Issue 2

Issues

Association of sodium intake with insulin resistance in Korean children and adolescents: the Korea National Health and Nutrition Examination Survey 2010

Yong Min Kim / So Hyun Kim / Young Suk Shim
Published Online: 2018-01-05 | DOI: https://doi.org/10.1515/jpem-2017-0362

Abstract

Background:

This study aimed to evaluate the relationship between sodium intake and insulin resistance indices.

Methods:

A total of 718 Korean children and adolescents (411 boys) aged 10–18 years who participated in the Korea National Health and Nutrition Examination Survey (KNHANES) were included in the study. The urinary sodium to urinary creatinine ratio was used as a surrogate for sodium intake. The homeostatic model assessment of insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were used as indices of insulin resistance.

Results:

The mean urinary sodium to urinary creatinine ratio was 11.34 in males and 10.17 in females. The urinary sodium to urinary creatinine ratio was significantly positively correlated with HOMA-IR (r=0.165, p<0.001) and inversely correlated with QUICKI (r=−0.181, p<0.001) in Pearson’s correlation analyses. In a multivariate linear regression analysis, the urinary sodium to urinary creatinine ratio was independently and significantly positively associated with HOMA-IR (β=0.073, p=0.018) and significantly inversely associated with QUICKI (β=−0.080, p=0.007) after adjustment for possible confounders. HOMA-IR was independently and significantly positively associated with the urinary sodium to urinary creatinine ratio (β=0.087, p=0.018), whereas QUICKI was independently and significantly negatively associated with the urinary sodium to urinary creatinine ratio (β=−0.097, p=0.009) after controlling for confounders.

Conclusions:

Our results suggest that sodium intake, as estimated by the urinary sodium to urinary creatinine ratio, may be independently associated with insulin resistance in children and adolescents.

Keywords: children; HOMA-IR; insulin resistance; QUICKI; sodium intake; urinary sodium to urinary creatinine ratio

References

  • 1.

    Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, et al. Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab 2010;95: 5189–98.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Vessby B, et al. Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation 2005;111:1985–91.CrossrefPubMedGoogle Scholar

  • 3.

    Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States, 1999–2012. JAMA Pediatr 2014;168:561–6.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 4.

    Yu SH, Song Y, Park M, Kim SH, Shin S, et al. Relationship between adhering to dietary guidelines and the risk of obesity in Korean children. Nutr Res Pract 2014;8:705–12.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    Li L, Pinot de Moira A, Power C. Predicting cardiovascular disease risk factors in midadulthood from childhood body mass index: utility of different cutoffs for childhood body mass index. Am J Clin Nutr 2011;93:1204–11.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 6.

    Reaven PD, Traustadottir T, Brennan J, Nader PR. Cardiovascular risk factors associated with insulin resistance in children persist into late adolescence. Diabetes care 2005;28:148–50.PubMedCrossrefGoogle Scholar

  • 7.

    Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes 2009;34:18–28.Web of ScienceGoogle Scholar

  • 8.

    Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 2011;159:584–90.CrossrefPubMedGoogle Scholar

  • 9.

    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362–74.CrossrefPubMedGoogle Scholar

  • 10.

    Morrison JA, Friedman LA, Wang P, Glueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 2008;152:201–6.CrossrefPubMedGoogle Scholar

  • 11.

    Saely CH, Aczel S, Marte T, Langer P, Hoefle G, et al. The metabolic syndrome, insulin resistance, and cardiovascular risk in diabetic and nondiabetic patients. J Clin Endocrinol Metab 2005;90:5698–703.PubMedCrossrefGoogle Scholar

  • 12.

    Yang Q, Zhang Z, Kuklina EV, Fang J, Ayala C, et al. Sodium intake and blood pressure among US children and adolescents. Pediatrics 2012;130:611–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014;371:612–23.CrossrefWeb of SciencePubMedGoogle Scholar

  • 14.

    Libuda L, Kersting M, Alexy U. Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. Public Health Nutr 2012;15:433–41.Web of SciencePubMedCrossrefGoogle Scholar

  • 15.

    Baudrand R, Campino C, Carvajal CA, Olivieri O, Guidi G, et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin Endocrinol 2014;80:677–84.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Yi KH, Hwang JS, Kim EY, Lee SH, Kim DH, et al. Prevalence of insulin resistance and cardiometabolic risk in Korean children and adolescents: a population-based study. Diabetes Res Clin Pract 2014;103:106–13.Web of ScienceCrossrefPubMedGoogle Scholar

  • 17.

    Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69–77.Web of ScienceCrossrefPubMedGoogle Scholar

  • 18.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502.PubMedGoogle Scholar

  • 19.

    Correa P, Montes G, Cuello C, Haenszel W, Liuzza G, et al. Urinary sodium-to-creatinine ratio as an indicator of gastric cancer risk. Natl Cancer Inst Monogr 1985;69:121–23.PubMedGoogle Scholar

  • 20.

    Ursini F, Grembiale A, Naty S, Grembiale RD. Serum complement C3 correlates with insulin resistance in never treated psoriatic arthritis patients. Clin Rheumatol 2014;33: 1759–64.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 21.

    Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000;85:2402–10.PubMedCrossrefGoogle Scholar

  • 22.

    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143–421.Google Scholar

  • 23.

    Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet 2005;366:1059–62.CrossrefPubMedGoogle Scholar

  • 24.

    Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 2014;371:601–11.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 25.

    Raisanen JP, Silaste ML, Kesaniemi YA, Ukkola O. Increased daily sodium intake is an independent dietary indicator of the metabolic syndrome in middle-aged subjects. Ann Med 2012;44:627–34.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 26.

    Oh SW, Han KH, Han SY, Koo HS, Kim S, et al. Association of sodium excretion with metabolic syndrome, insulin resistance, and body fat. Medicine (Baltimore) 2015;94:e1650.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Rodrigues SL, Baldo MP, de Sa Cunha R, Andreao RV, Del Carmen Bisi Molina M, et al. Salt excretion in normotensive individuals with metabolic syndrome: a population-based study. Hypertens Res 2009;32:906–10.CrossrefWeb of SciencePubMedGoogle Scholar

  • 28.

    Hoffmann IS, Cubeddu LX. Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 2009;19:123–8.CrossrefPubMedGoogle Scholar

  • 29.

    Ellison RC, Sosenko JM, Harper GP, Gibbons L, Pratter FE, et al. Obesity, sodium intake, and blood pressure in adolescents. Hypertension 1980;2:78–82.PubMedCrossrefGoogle Scholar

  • 30.

    Woodruff SJ, Fryer K, Campbell T, Cole M. Associations among blood pressure, salt consumption and body weight status of students from south-western Ontario. Public Health Nutr 2014;17:1114–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 31.

    He FJ, Marrero NM, MacGregor GA. Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? Hypertension 2008;51:629–34.CrossrefPubMedGoogle Scholar

  • 32.

    Grimes CA, Riddell LJ, Campbell KJ, Nowson CA. Dietary salt intake, sugar-sweetened beverage consumption, and obesity risk. Pediatrics 2013;131:14–21.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 33.

    Zhu H, Pollock NK, Kotak I, Gutin B, Wang X, et al. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics 2014;133:e635–42.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 34.

    Fonseca-Alaniz MH, Brito LC, Borges-Silva CN, Takada J, Andreotti S, et al. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity (Silver Spring) 2007;15:2200–8.PubMedCrossrefGoogle Scholar

  • 35.

    Hattori T, Murase T, Takatsu M, Nagasawa K, Matsuura N, et al. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome. J Am Heart Assoc 2014;3:e001312.CrossrefWeb of ScienceGoogle Scholar

  • 36.

    Premilovac D, Richards SM, Rattigan S, Keske MA. A vascular mechanism for high-sodium-induced insulin resistance in rats. Diabetologia 2014;57:2586–95.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 37.

    Bentley B. A review of methods to measure dietary sodium intake. J Cardiovasc Nurs 2006;21:63–7.PubMedCrossrefGoogle Scholar

  • 38.

    Brown IJ, Dyer AR, Chan Q, Cogswell ME, Ueshima H, et al. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am J Epidemiol 2013;177: 1180–92.CrossrefPubMedGoogle Scholar

  • 39.

    Kawasaki T, Itoh K, Uezono K, Sasaki H. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin Exp Pharmacol Physiol 1993;20:7–14.PubMedCrossrefGoogle Scholar

  • 40.

    McLean R, Williams S, Mann J. Monitoring population sodium intake using spot urine samples: validation in a New Zealand population. J Hum Hypertens 2014;28: 657–62.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Young Suk Shim, MD, Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-si, 18450 Gyeonggi-do, Republic of Korea, Phone: +82-31-8086-2560, Fax: +82-31-8086-2029


Received: 2017-09-14

Accepted: 2017-11-16

Published Online: 2018-01-05

Published in Print: 2018-01-26


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 31, Issue 2, Pages 117–125, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2017-0362.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yeong Mi Park, Chang Keun Kwock, Seyeon Park, Heather A. Eicher-Miller, and Yoon Jung Yang
Nutrition Research and Practice, 2018, Volume 12, Number 5, Page 443
[2]
Carmen Campino, Rene Baudrand, Carolina A Valdivia, Cristian Carvajal, Andrea Vecchiola, Alejandra Tapia-Castillo, Alejandro Martínez-Aguayo, Hernán Garcia, Lorena García, Fidel Allende, Sandra Solari, Cristóbal A Fuentes, Calos F Lagos, Maria Paulina Rojas, Doris Muñoz, and Carlos E Fardella
American Journal of Hypertension, 2018

Comments (0)

Please log in or register to comment.
Log in