Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 32, Issue 1

Issues

Utilizing serum bicarbonate instead of venous pH to transition from intravenous to subcutaneous insulin shortens the duration of insulin infusion in pediatric diabetic ketoacidosis

Jennifer Gauntt
  • Corresponding author
  • Division of Cardiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA, Phone: +614-722-0596
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Priya Vaidyanathan
  • Division of Endocrinology and Diabetes, Children’s National Health System, Washington, DC, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonali Basu
Published Online: 2018-12-07 | DOI: https://doi.org/10.1515/jpem-2018-0394

Abstract

Background

Standard therapy of diabetic ketoacidosis (DKA) in pediatrics involves intravenous (IV) infusion of regular insulin until correction of acidosis, followed by transition to subcutaneous (SC) insulin. It is unclear what laboratory marker best indicates correction of acidosis. We hypothesized that an institutional protocol change to determine correction of acidosis based on serum bicarbonate level instead of venous pH would shorten the duration of insulin infusion and decrease the number of pediatric intensive care unit (PICU) therapies without an increase in adverse events.

Methods

We conducted a retrospective (pre/post) analysis of records for patients admitted with DKA to the PICU of a large tertiary care children’s hospital before and after a transition-criteria protocol change. Outcomes were compared between patients in the pH transition group (transition when venous pH≥7.3) and the bicarbonate transition group (transition when serum bicarbonate ≥15 mmol/L).

Results

We evaluated 274 patient records (n=142 pH transition group, n=132 bicarbonate transition group). Duration of insulin infusion was shorter in the bicarbonate transition group (18.5 vs. 15.4 h, p=0.008). PICU length of stay was 3.2 h shorter in the bicarbonate transition group (26.0 vs. 22.8 h, p=0.04). There was no difference in the number of adverse events between the groups.

Conclusions

Transitioning patients from IV to SC insulin based on serum bicarbonate instead of venous pH led to a shorter duration of insulin infusion with a reduction in the number of PICU therapies without an increase in the number of adverse events.

This article offers supplementary material which is provided at the end of the article.

Keywords: diabetic ketoacidosis; insulin infusion; pediatric intensive care unit

References

  • 1.

    Felner EI, White PC. Improving management of diabetic ketoacidosis in children. Pediatrics 2001;108:735–40.CrossrefPubMedGoogle Scholar

  • 2.

    White NH. Management of diabetic ketoacidosis. Rev Endocr Metab Disord 2003;4:343–53.PubMedCrossrefGoogle Scholar

  • 3.

    Rosenbloom AL. Hyperglycemic crises and their complications in children. J Pediatr Endocrinol Metab 2007;20:5–18.PubMedGoogle Scholar

  • 4.

    Rosenbloom AL. The management of diabetic ketoacidosis in children. Diabetes Ther 2012;1:103–20.Google Scholar

  • 5.

    Wolfsdorf J, Glaser N, Sperling MA. Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes Association. Diabetes Care 2006;29:1150–9.PubMedCrossrefGoogle Scholar

  • 6.

    Wolfsdorf J, Craig ME, Daneman D, Dunger D, Edge J, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes 2009;10:118–33.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 7.

    Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, et al. Diabetic ketoacidosis and hyperglycemic hyperosmolar state: ISPAD clinical practice consensus guidelines 2014 compendium. Pediatr Diabetes 2014;15:154–79.CrossrefGoogle Scholar

  • 8.

    Kellum JA. Saline-induced hyperchloremic metabolic acidosis. Crit Care Med 2002;30:259–61.PubMedCrossrefGoogle Scholar

  • 9.

    Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med 2002;30:157–60.PubMedCrossrefGoogle Scholar

  • 10.

    Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during acute normovolaemic haemodilution. Intensive Care Med 2004;30:1432–7.PubMedGoogle Scholar

  • 11.

    Nadler OA, Finkelstein MJ, Reid SR. How well does serum bicarbonate concentration predict the venous pH in children being evaluated for diabetic ketoacidosis? Pediatr Emerg Care 2011;27:907–10.Web of SciencePubMedCrossrefGoogle Scholar

  • 12.

    von Oettingen J, Wolfsdorf J, Feldman HA, Rhodes ET. Use of serum bicarbonate to substitute for venous pH in new-onset diabetes. Pediatrics 2015;136:e371–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Nyenwe E, Wan J, Kitabchi A. Venous serum bicarbonate concentration predicts arterial pH in adults with diabetic ketoacidosis. Endocr Pract 2014;20:201–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Grimberg A, Cerri RW, Satin-Smith M, Cohen P. The “two bag system” for variable intravenous dextrose and fluid administration: benefits in diabetic ketoacidosis management. J Pediatr 1999;134:376–8.CrossrefGoogle Scholar

  • 15.

    Poirier MP. A prospective study of the “two-bag system” in diabetic ketoacidosis management. Clin Pediatr 2004;43:809–13.CrossrefGoogle Scholar

  • 16.

    Harris P, Taylor R, Thielke R, Payne J, Gonzalez N, et al. Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.CrossrefWeb of SciencePubMedGoogle Scholar

  • 17.

    Shankar V, Haque A, Churchwell KB, Russell W. Insulin glargine supplementation during early management phase of diabetic ketoacidosis in children. Intensive Care Med 2007;33:1173–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 18.

    Harrison VS, Rustico S, Palladino AA, Ferrara C, Hawkes CP. Glargine co-administration with intravenous insulin in pediatric diabetic ketoacidosis is safe and facilitates transition to a subcutaneous regimen. Pediatr Diabetes 2016;17:1–7.Web of ScienceGoogle Scholar

  • 19.

    Chalom R, Raphaely RC, Costarino AT. Hospital costs of pediatric intensive care. Crit Care Med 1999;27:2079–85.PubMedCrossrefGoogle Scholar

  • 20.

    Tieder JS, McLeod L, Keren R, Luan X, Localio R, et al. Variation in resource use and readmission for diabetic ketoacidosis in children’s hospitals. Pediatrics 2013;132:229–36.CrossrefWeb of SciencePubMedGoogle Scholar

  • 21.

    Goudie A, Dynan L, Brady PW, Rettiganti M. Attributable cost and length of stay for central line-associated bloodstream infections. Pediatrics 2014;133:e1525–32.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Nowak JE, Brilli RJ, Lake MR, Sparling KW, Butcher J, et al. Reducing catheter-associated bloodstream infections in the pediatric intensive care unit: business case for quality improvement. Pediatr Crit Care Med 2010;11:579–87.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 23.

    Elward AM, Hollenbeak CS, Warren DK, Fraser VJ. Attributable cost of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 2005;115:868–72.CrossrefPubMedGoogle Scholar

  • 24.

    Slonim AD, Kurtines HC, Sprague BM, Singh N. The costs associated with nosocomial bloodstream infections in the pediatric intensive care unit. Pediatr Crit Care Med 2001;2:170–4.PubMedCrossrefGoogle Scholar

  • 25.

    Goudie A, Dynan L, Brady PW, Fieldston E, Brilli RJ, et al. Costs of venous thromboembolism, catheter-associated urinary tract infection and pressure ulcer. Pediatrics 2015;136:432–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 26.

    Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. Clin Microbiol Rev 2007;20:409–25.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 27.

    Sochet AA, Cartron AM, Nyhan A, Spaeder MC, Song X, et al. Surgical site infection after pediatric cardiothoracic surgery: impact on hospital cost and length of stay. World J Pediatr Cong Heart Surg 2017;8:7–12.Web of ScienceCrossrefGoogle Scholar

  • 28.

    Roddy DJ, Spaeder MC, Pastor W, Stockwell DC, Klugman D. Unplanned extubations in children: impact on hospital cost and length of stay. Pediatr Crit Care Med 2015;16:572–5.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Tundia NL, Heaton PC, Kelton CM. The national burden of E-code-identified adverse drug events among hospitalized children using a national discharge database. Pharmacoepidemiol Drug Saf 2011;20:866–78.Web of ScienceCrossrefPubMedGoogle Scholar

  • 30.

    Basnet S, Venepalli PK, Andoh J, Verhulst S, Koirala J. Effect of normal saline and half normal saline on serum electrolytes during recovery phase of diabetic ketoacidosis. J Intensive Care Med 2012;29:38–42.Web of SciencePubMedGoogle Scholar

  • 31.

    Sheikh-Ali M. Can serum B-hydroxybutyrate be used to diagnose DKA? Diabetes Care 2008;31:643–7.CrossrefGoogle Scholar

  • 32.

    Fearon DM, Steele DW. End-tidal carbon dioxide predicts the presence and severity of acidosis in children with diabetes. Acad Emerg Med 2002;9:1373–8.PubMedCrossrefGoogle Scholar

  • 33.

    Garcia E, Abramo TJ, Okada P, Reisch JS, Wiebe RA. Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis. Crit Care Med 2003;31:2539–43.PubMedCrossrefGoogle Scholar

  • 34.

    Agus MS, Alexander JL, Mantell PA. Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis. Pediatr Diabetes 2006;7:196–200.CrossrefPubMedGoogle Scholar

  • 35.

    Menchine M, Probst MA, Agy C, Bach D, Arora S. Diagnostic accuracy of venous blood gas electrolytes for identifying diabetic ketoacidosis in the emergency department. Acad Emerg Med 2011;18:1105–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 36.

    Silver SM, Clark EC, Schroeder BM, Sterns RH. Pathogenesis of cerebral edema after treatment of diabetic ketoacidosis. Kidney Int 1997;51:1237–44.PubMedCrossrefGoogle Scholar

  • 37.

    Glaser N, Barnett P, McCaslin I, Nelson D, Trainor J. Risk factors for cerebral edema in children with diabetic ketoacidosis. N Engl J Med 2001;344:264–9.CrossrefPubMedGoogle Scholar

  • 38.

    Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, et al. Hyperglycemic crises in diabetes. Diabetes Care 2000;27:S94–102.Web of ScienceGoogle Scholar

  • 39.

    Cebeci An, Guven A, Kirmizibekmez H, Yildiz M, Dursun F. Clinical features and management of diabetic ketoacidosis in different age groups of children: children less than 5 years of age are at higher risk of metabolic decompensation. J Pediatr Endocrin Metab 2012;25:917–25.Google Scholar

  • 40.

    Cohn BG, Keim SM, Watkins JW, Camargo CA. Does management of diabetic ketoacidosis with subcutaneous rapid-acting insulin reduce the need for intensive care unit admission? J Emerg Med 2015;49:530–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 41.

    Karoli R, Fatima J, Salman T, Sandhu S, Shankar R. Managing diabetic ketoacidosis in non-intensive care unit setting: role of insulin analogs. Indian J Pharmacol 2011;43:398–401.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 42.

    Savoldelli RD, Farhat SC, Manna TD. Alternative management of diabetic ketoacidosis in a Brazilian pediatric emergency department. Diabetol Metab Syndr 2010;2:41–9.CrossrefWeb of ScienceGoogle Scholar

About the article

*Corresponding author: Jennifer Gauntt, MD, Division of Cardiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA, Phone: +614-722-0596


Received: 2018-09-11

Accepted: 2018-11-02

Published Online: 2018-12-07

Published in Print: 2019-01-28


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 32, Issue 1, Pages 11–17, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2018-0394.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in