Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 32, Issue 10

Issues

Findings of metabolic bone disease in infants with unexplained fractures in contested child abuse investigations: a case series of 75 infants

Marvin Miller
  • Corresponding author
  • Dayton Children’s Hospital, Department of Medical Genetics, 1 Children’s Plaza, Dayton, OH 45404, USA
  • Department of Pediatrics, Ob/Gyn and Biomedical Engineering, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adrienne Stolfi
  • Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Ayoub
Published Online: 2019-10-10 | DOI: https://doi.org/10.1515/jpem-2019-0093

Abstract

Background

Infants who present with multiple unexplained fractures (MUF) are often diagnosed as victims of child abuse when parents deny wrongdoing and cannot provide a plausible alternative explanation. Herein we describe evidence of specific and commonly overlooked radiographic abnormalities and risk factors that suggest a medical explanation in such cases.

Methods

We evaluated such infants in which we reviewed the radiographs for signs of poor bone mineralization. We reviewed medical, pregnancy and family histories.

Results

Seventy-five of 78 cases showed poor bone mineralization with findings of healing rickets indicating susceptibility to fragility fractures that could result from a wide variety of causes other than child abuse. We found risk factors that could explain the poor bone mineralization: maternal and infant vitamin D deficiency (VDD), decreased fetal bone loading, prematurity and others. Most infants had more than one risk factor indicating that this bone disorder is a multifactorial disorder that we term metabolic bone disease of infancy (MBDI). Maternal and infant VDD were common. When tested, 1,25-dihydroxyvitamin D levels were often elevated, indicating metabolic bone disease.

Conclusions

Child abuse is sometimes incorrectly diagnosed in infants with MUF. Appreciation of the radiographic signs of MBDI (healing rickets), risk factors for MBDI and appropriate laboratory testing will improve diagnostic accuracy in these cases.

Keywords: bone loading; child abuse; fractures in infancy; metabolic bone disease of infancy; Utah Paradigm; vitamin D deficiency

References

  • 1.

    Flaherty EG, Perez-Rossello JM, Levine MA, Hennrikus WL, American Academy of Pediatrics Committee on Child Abuse and Neglect. Evaluating children with fractures for child physical abuse. Pediatrics 2014;133:e477–89.PubMedCrossrefGoogle Scholar

  • 2.

    Ayoub D, Hyman C, Cohen M, Miller M. A critical review of the classic metaphyseal lesion (CML): traumatic or metabolic? AJR Am J Roentgenol 2014;202:185–96.CrossrefGoogle Scholar

  • 3.

    Miller ME, Mirkin LD. Classical metaphyseal lesions thought to be pathognomonic of child abuse are often artifacts or indicative of metabolic bone disease. Med Hypotheses 2018;115:65–71.PubMedCrossrefGoogle Scholar

  • 4.

    Chalumeau M, Foix-l’Helias L, Scheinmann P, Zuani P, Gendrel D, et al. Rib fractures after chest physiotherapy for bronchiolitis or pneumonia in infants. Pediatr Radiol 2002;32:644–7.CrossrefPubMedGoogle Scholar

  • 5.

    van Rijn RR, Bilo RA, Robben SG. Birth-related mid-posterior rib fractures in neonates: a report of three cases (and a possible fourth case) and a review of the literature. Pediatr Radiol 2009;39:30–4.CrossrefGoogle Scholar

  • 6.

    Burr D. Bone quality: understanding what matters. J Musculoskelet Neuronal Interact 2004;4:184–6.PubMedGoogle Scholar

  • 7.

    Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int 2003;14:13–8.CrossrefGoogle Scholar

  • 8.

    Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU). Traumatic shaking: the role of the triad in medical investigations of suspected traumatic shaking – a systematic review SBU assessment — report 255E/2016, 2016. http://www.sbu.se/contentassets/09cc34e7666340a59137ba55d6c55bc9/traumatic_shaking_2016.pdf.

  • 9.

    Hess A. The radiographic signs of rickets. In: Rickets, including osteomalacia and tetany. London: Henry Kimpton. 1930:250–70.Google Scholar

  • 10.

    Eliot M, Park E. Rickets. In: McQuarrie I, editor. Brenner’s practice of pediatrics, Vol. I. Hagerstown, MD: WF Prior Co.; 1948:1–110.Google Scholar

  • 11.

    Wimberger HA. A study of developing, florid and healing rickets as demonstrated by X-ray photography. Med Res Counc Spec Rept Ser 1923;77:95–114.Google Scholar

  • 12.

    Groover TA, Christie AC, Merritt EA. Roentgen-ray study of 926 cases of rickets. Radiology 1925;5:189–93.CrossrefGoogle Scholar

  • 13.

    Sittampalam K, Rosenberg AE. Metabolic and reactive lesions simulating neoplasms. Pathol Case Rev 2001;6:14–21.CrossrefGoogle Scholar

  • 14.

    Williams HJ, Davies AM, Chapman S. Bone within a bone. Clin Radiol 2004;59:132–44.CrossrefPubMedGoogle Scholar

  • 15.

    Keller K, Barnes P. Rickets vs. abuse: a national and international epidemic. Pediatr Radiol 2008;38:1210–6.CrossrefPubMedGoogle Scholar

  • 16.

    Dodds GS, Cameron HC. Studies on experimental rickets in rats: IV. The relation of rickets to growth, with special reference to the bones. Am J Pathol 1943;19:169–85.PubMedGoogle Scholar

  • 17.

    Miller ME, Ward T, Stolfi A, Ayoub D. Overrepresentation of multiple birth pregnancies in young infants with four metabolic bone disorders: further evidence that fetal bone loading is a critical determinant of fetal and young infant bone strength. Osteoporos Int 2014;25:1861–73.CrossrefGoogle Scholar

  • 18.

    Moncrieff M, Fadahunsi TO. Congenital rickets due to maternal vitamin D deficiency. Arch Dis Child 1974;49:810–1.CrossrefPubMedGoogle Scholar

  • 19.

    Paterson CR, Burns J, McAllion SJ. Osteogenesis imperfecta: the distinction from child abuse and the recognition of a variant form. Am J Med Gen 1993;45:187–92.CrossrefGoogle Scholar

  • 20.

    Frost HM. From Wolf’s law to the Utah paradigm: insights about bone physiology and its critical application. Anat Rec 2001;262:398–419.CrossrefGoogle Scholar

  • 21.

    Antonucci R, Locci C, Clemente MG, Chicconi E, Antonucci L. Vitamin D deficiency in childhood: old lessons and current challenges. J Pediatr Endocrinol Metab 2018;31:247–60.CrossrefPubMedGoogle Scholar

  • 22.

    Heaney RP, Skillman TG. Calcium metabolism in normal human pregnancy. J Clin Endocrinol 1971;33:661–9.CrossrefGoogle Scholar

  • 23.

    Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 2010;25:14–9.PubMedCrossrefGoogle Scholar

  • 24.

    Viljakainen H, Saarnio E, Hytinantti T, Miettinen M, Surcel H, et al. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 2010;95:1749–57.PubMedCrossrefGoogle Scholar

  • 25.

    Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006;367: 36–43.CrossrefGoogle Scholar

  • 26.

    Narchi H, Kochiyil J, Zayed R, Abdulrazzak W, Agarwal M. Longitudinal study of vitamin D status in the 1st 6 months of life. Ann Top Paediatr 2011;31:221–30.Google Scholar

  • 27.

    Ziegler EE, Hollis BW, Nelson SE, Jeter JM. Vitamin D deficiency in breastfed infants in Iowa. Pediatrics 2006;118:603–10.CrossrefPubMedGoogle Scholar

  • 28.

    Graham Jr JM, Sanchez-Lara PA. Smith’s recognizable patterns of human deformation. Philadelphia: Elsevier Health Sciences, 2015.Google Scholar

  • 29.

    Jansson LM, DiPietro J, Elko A. Fetal response to maternal methadone administration. Am J Obstet Gynecol 2005;193:611–7.PubMedCrossrefGoogle Scholar

  • 30.

    Miller ME, Hangartner TN. Temporary brittle bone disease: association with decreased fetal movement and osteopenia. Calcif Tissue Int 1999;64:137–43.CrossrefPubMedGoogle Scholar

  • 31.

    Miller ME. Hypothesis: fetal movement influences fetal and infant bone strength. Med Hypotheses 2005;65:880–6.CrossrefPubMedGoogle Scholar

  • 32.

    Rodriguez JI, Palacios J, Garcia-Alix A, Pastor I, Paniagua R, et al. Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int 1988;43:335–9.PubMedCrossrefGoogle Scholar

  • 33.

    Rodriguez JI, Garcia-Alix A, Palacios J, Paniagua R. Changes in the long bones due to fetal immobility caused by neuromuscular disease. J Bone Joint Surg Am 1988;70:1052–60.CrossrefGoogle Scholar

  • 34.

    Rodriguez JI, Palacios J, Ruiz A, Sanchez M, Alvarez I, et al. Morphological changes in long bone development in fetal akinesia deformation sequence: an experimental study in curarized rat fetuses. Teratology 1992;45:213–21.CrossrefPubMedGoogle Scholar

  • 35.

    Miller ME, Higginbottom M, Smith DW. Short umbilical cord: its origin and relevance. Pediatrics 1981;67:618–21.PubMedGoogle Scholar

  • 36.

    Raum K, Grimal Q, Varga P, Barkmann R, Glüer CC, et al. Ultrasound to assess bone quality. Curr Osteoporos Rep 2014;12:154–62.PubMedCrossrefGoogle Scholar

  • 37.

    Wright D, Chan GM. Fetal bone strength and umbilical cord length. J Perinatol 2009;29:603–5.CrossrefPubMedGoogle Scholar

  • 38.

    Gursoy T, Yurdakok M, Hayran M, Korkmaz A, Yigit S, et al. Bone speed of sound curves of twin and singleton neonates. J Pediatr Endocrinol Metab 2008;21:1065–72.PubMedGoogle Scholar

  • 39.

    Tshorny M, Mimouni F, Littner Y, Alper A, Mandel D. Decreased neonatal tibial bone ultrasound velocity in term infants born after breech presentation. J Perinatol 2007;27:693–6.PubMedCrossrefGoogle Scholar

  • 40.

    Ireland A, Crozier SR, Heazell AE, Ward KA, Godfrey KM, et al. Breech presentation is associated with lower bone mass and area: findings from the Southampton Women’s Survey. Osteoporos Int 2018;29:2275–81.CrossrefPubMedGoogle Scholar

  • 41.

    Littner Y, Mandel D, Mimouni FB, Dollberg S. Decreased bone ultrasound velocity in large-for-gestational-age infants. J Perinatol 2004;24:21–3.PubMedCrossrefGoogle Scholar

  • 42.

    Koo W, Sherman R, Succop P, Krug-Wispe S, Tsang RC, et al. Fractures and rickets in very low birthweight infants: conservative management and outcome. J Pediatr Orthop 1989;9:326–30.PubMedGoogle Scholar

  • 43.

    Amir J, Katz K, Grunebaum M, Yosipovich Z, Wielunsky E, et al. Fractures in premature infants. J Pediatr Orthop 1988;8:41–4.PubMedCrossrefGoogle Scholar

  • 44.

    Dabezies E, Warren PD. Fractures in very low birth weight infants with rickets. Clin Orthopaedic Rel Res 1997;335:233–9.CrossrefGoogle Scholar

  • 45.

    Miller ME. The bone disease of preterm birth: a biomechanical perspective. Pediatr Res 2003;53:18–23.Google Scholar

  • 46.

    Litmanovitz I, Dolfin T, Arnon S, Regev RH, Nemet D, et al. Assisted exercise and bone strength in preterm infants. Calcif Tissue Int 2007;80:39–43.CrossrefPubMedGoogle Scholar

  • 47.

    Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 2009;15:674–81.PubMedCrossrefGoogle Scholar

  • 48.

    Wright MJ, Proctor DD, Insogna KL, Kerstetter JE. Proton pump-inhibiting drugs, calcium homeostasis, and bone health. Nutr Rev 2008;66:103–8.PubMedCrossrefGoogle Scholar

  • 49.

    Lyon J. Study questions use of acid suppressors to curb mild infant reflux. J Am Med Assoc 2017;318:1427–8.CrossrefGoogle Scholar

  • 50.

    Heaney RP, Nordin BE. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 2002;21:239–44.CrossrefPubMedGoogle Scholar

  • 51.

    Demarini S, Specker BL, Sierra RI, Miodovnik M, Tsang RC. Evidence of increased intrauterine bone resorption in term infants of mothers with insulin-dependent diabetes. J Pediatr 1995;126:796–8.CrossrefPubMedGoogle Scholar

  • 52.

    Mimouni F, Steichen JJ, Tsang RC, Hertzberg V, Miodovnik M. Decreased bone mineral content in infants of diabetic mother. Am J Perinatal Med 1988;5:339–43.CrossrefGoogle Scholar

  • 53.

    Kainer F, Prechtl HF, Engele H, Einspieler C. Assessment of the quality of general movements in fetuses and infants of women with type-I diabetes mellitus. Early Hum Dev 1997;50:13–25.CrossrefPubMedGoogle Scholar

  • 54.

    Regev RH, Dolfin T, Eliakim A, Arnon S, Bauer S, et al. Bone speed of sound in infants of mothers with gestational diabetes mellitus. J Pediatr Endocrinol Metab 2004;17:1083–8.PubMedGoogle Scholar

  • 55.

    Paterson CR, Mole PA. Joint laxity in the parents of children with temporary brittle bone disease. Rheumatol Int 2012;32:2843–6.PubMedCrossrefGoogle Scholar

  • 56.

    Holick MF, Hossein-Nezhad A, Tabatabaei F. Multiple fractures in infants who have Ehlers-Danlos/hypermobility syndrome and or vitamin D deficiency: a case series of 72 infants whose parents were accused of child abuse and neglect. Dermato-Endocrinology 2017;9:e1279768.PubMedCrossrefGoogle Scholar

  • 57.

    Valentin L, Marsal K. Pregnancy outcome in women who perceive decreased fetal movement. Eur J Obstet Gynecol Reprod Biol 1987;24:23–32.CrossrefGoogle Scholar

  • 58.

    McFie J, Welbourn HF. Effect of malnutrition in infancy on the development of bone, muscle, and fat. J Nutr 1962;76:97–105.CrossrefGoogle Scholar

  • 59.

    Beighton PH, Grahame R, Bird H. Hypermobility of joints. Chapter 2. Assessment of hypermobility. London: Springer Science & Business Media, 2011. Available at: https://www.ehlers-danlos.com/assessing-joint-hypermobility/.

  • 60.

    Caffey J. Pediatric X-ray diagnosis: a textbook for students and practitioners of pediatric surgery & radiology. 1st edition. Chicago: Year Book. 1945:688–701.Google Scholar

  • 61.

    Nelson WE. Mitchell-Nelson textbook of pediatrics, 4th edition revised. Philadelphia: WB Saunders Company; 1946:291–302.Google Scholar

  • 62.

    Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, et al. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 2007;137:447–52.PubMedCrossrefGoogle Scholar

  • 63.

    Gordon CM, Feldman HA, Sinclair L, Williams AL, Kleinman PK, et al. Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med 2008;162:505–12.CrossrefPubMedGoogle Scholar

  • 64.

    Kochanek KD, Kirmeyer SE, Martin JA, Strobino DM, Guyer B. Annual summary of vital statistics: 2009. Pediatrics 2012;129:338–48.CrossrefPubMedGoogle Scholar

  • 65.

    Park SH, Lee GM, Moon JE, Kim HM. Severe vitamin D deficiency in preterm infants: maternal and neonatal clinical features. Korean J Pediatr 2015;58:427–33.CrossrefPubMedGoogle Scholar

  • 66.

    Weerakkody RA, Vandrovcova J, Kanonidou C, Mueller M, Gampawar P, et al. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome. Genet Med 2016;8:1119–27.Google Scholar

  • 67.

    Eller-Vainicher C, Bassotti A, Imeraj A, Cairoli E, Ulivieri FM, et al. Bone involvement in adult patients affected with Ehlers-Danlos syndrome. Osteoporos Int 2016;27:2525–31.CrossrefPubMedGoogle Scholar

  • 68.

    Stern CM, Pepin MJ, Stoler JM, Kramer DE, Spencer SA, et al. Musculoskeletal conditions in a pediatric population with Ehlers-Danlos syndrome. J Pediatr 2017;181:261–6.CrossrefGoogle Scholar

  • 69.

    Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization. J Clin Invest 2012;122:1803–15.PubMedCrossrefGoogle Scholar

  • 70.

    Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Ann Rev Cell Dev Biol 2009;25:629–48.CrossrefGoogle Scholar

  • 71.

    Tanner JM, Davies PS. Clinical longitudinal standards for height and height velocity for North American children. J Pediatr 1985;107:317–29.CrossrefPubMedGoogle Scholar

  • 72.

    Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am 1989;71:1225–31.PubMedCrossrefGoogle Scholar

  • 73.

    Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology 1936;26:165–77.CrossrefGoogle Scholar

  • 74.

    Colbert C. The osseous system: an overview. Invest Radiol 1972;7:223–32.CrossrefPubMedGoogle Scholar

  • 75.

    Worlock P, Stower M, Baror P. Patterns of fractures in accidental and non accidental injury in children: a comparative study. Br Med J (Clin Res Ed) 1986;293:100–2.CrossrefPubMedGoogle Scholar

  • 76.

    McMahon PM, Grossman W, Gaffney M, Stanitski C. Soft tissue injury as an indication of child abuse. J Bone Joint Surg Am 1995;77:1179–83.PubMedCrossrefGoogle Scholar

  • 77.

    Mathew MO, Ramamohan N, Bennet GC. Importance of bruising associated with paediatric fractures: prospective observational study. Br Med J 1998;317:1117–8.CrossrefGoogle Scholar

  • 78.

    Garcia VF, Gotschall CS, Eichelberger MR, Bowman LM. Rib fractures in children: a marker of severe trauma. J Trauma 1990;30:695–700.CrossrefPubMedGoogle Scholar

  • 79.

    Paterson CR, Monk EA. Long-term follow-up of children thought to have temporary brittle bone disease. Pediatr Health Med Ther 2011;2:55–8.Google Scholar

  • 80.

    Paterson CR. Temporary brittle bone disease: fractures in medical care. Acta Paediatr 2009;98:1935–8.PubMedCrossrefGoogle Scholar

  • 81.

    Högberg U, Andersson J, Högberg G, Thiblin I. Metabolic bone disease risk factors strongly contributing to long bone and rib fractures during early infancy: a population register study. PLoS One 2018;13:e0208033.CrossrefGoogle Scholar

About the article

Corresponding author: Marvin Miller, MD, Dayton Children’s Hospital, Department of Medical Genetics, 1 Children’s Plaza, Dayton, OH 45404, USA; and Department of Pediatrics, Ob/Gyn and Biomedical Engineering, Wright State University Boonshoft School of Medicine, Dayton, OH, USA, Phone: +(937) 641-5374, Fax: +(937) 641-5325


Received: 2019-02-18

Accepted: 2019-07-05

Published Online: 2019-10-10

Published in Print: 2019-10-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 32, Issue 10, Pages 1103–1120, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2019-0093.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in