Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma

IMPACT FACTOR 2018: 1.239

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

See all formats and pricing
More options …
Volume 28, Issue 3-4


Three years of liraglutide treatment offers continuously optimal glycemic control in a pediatric patient with maturity-onset diabetes of the young type 3

Tatsuhiko Urakami / Masako Habu / Misako Okuno / Junichi Suzuki / Shori Takahashi / Tohru Yorifuji
  • Department of Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-18 | DOI: https://doi.org/10.1515/jpem-2014-0211


Sulfonylureas (SUs) are recommended as the first-line pharmacological treatment in patients with uncontrolled maturity-onset diabetes of the young type 3 (MODY3). In contrast, glucagon-like peptide-1 (GLP-1) receptor agonists have the advantages of a low risk of hypoglycemia and maintained β-cell function. We report a pediatric patient with MODY3 treated with a GLP-1 receptor agonist, liraglutide. A 12-year-old Japanese girl with MODY3 had been treated with insulin for 6 months since the time of diagnosis. After genetic analysis, we switched her treatment from insulin to liraglutide. After switching to liraglutide, the patient maintained optimal glycemic control with hemoglobin A1c levels of 6.8%–7.5% and had postprandial C-peptide levels >3.0 ng/mL during a 3-year treatment period. No adverse events associated with liraglutide were observed. GLP-1 receptor agonists are the potential medications for patients with MODY3 who maintain residual insulin secretion.

Keywords: endogenous insulin secretion; GLP-1 receptor agonist; glycemic control; MODY3; pediatric patient


  • 1.

    Fajans SS, Conn JW. Tolbutamide-induced improvement in carbohydrate tolerance of young people with mild diabetes mellitus. Diabetes 1960;9:83–8.CrossrefPubMedGoogle Scholar

  • 2.

    Tattersall RB. Mild familiar diabetes with dominant inheritance. Q J Med 1974;43:339–57.Google Scholar

  • 3.

    McDonald TJ, Colclough K, Brown R, Shields B, Shepherd M, et al. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from type 1 diabetes. Diabet Med 2011;28:1028–33.PubMedCrossrefGoogle Scholar

  • 4.

    Kavvoura FK, Owen KR. Maturity-onset diabetes of the young: clinical characteristics, diagnosis and management. Pediatr Endocrinol Rev 2013;10:234–42.Google Scholar

  • 5.

    Frayling TM, Bulamn MP, Ellard S, Appletion M, Dronsfield MJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene are a common cause of maturity-onset diabetes of the young in the UK. Diabetes 1997;46:720–5.CrossrefGoogle Scholar

  • 6.

    Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. ISPAD Clinical Consensus Practice Guidelines 2006-2007. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2006;7:352–60.CrossrefPubMedGoogle Scholar

  • 7.

    Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, et al. Genetic cause of hyperglycemia and response to treatment in diabetes. Lancet 2003;362:1275–81.Google Scholar

  • 8.

    Shepherd M, Shields B, Ellard S, Rubio-Cabezas O, Hattersley AT. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycemic control in the majority of insulin-treated patients. Diabet Med 2009;26:437–41.CrossrefGoogle Scholar

  • 9.

    Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for Study of Diabetes. Diabetes Care 2009;32:193–203.CrossrefWeb of SciencePubMedGoogle Scholar

  • 10.

    Madsbad S. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)-preclinical and clinical results: Best Pract Res Clin Endocrinol Metab 2009;23:463–77.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Russell-Jones D. The safety of GLP-1 receptor agonists in the treatment of type 2 diabetes. Int J Clin Pract 2010;64:1402–14.CrossrefGoogle Scholar

  • 12.

    Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, et al. One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004;53:1187–94.Google Scholar

  • 13.

    Kothare PA, Seger ME, Northrup J, Mace K, Mitchell MI, et al. Effect of exenatide on the pharmacokinetics of a combination oral contraceptive in healthy women: an open-label, randomized, crossover trial. J Clin Pharmacol 2008;48:1389–99.CrossrefGoogle Scholar

  • 14.

    Bregenholt S, Møldrup A, Blume N. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 2005;330:577–84.Google Scholar

  • 15.

    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696–705.Google Scholar

  • 16.

    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, et al. Management of hyperglycemia in type 2 diabetes: A patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364–79.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Rosenbloom AL, Silverstein JH, Amemiya S, Zeltler P, Klingensmith GJ. ISPAD Clinical Practice Consensus Guidelines 2009 Compendium. Type 2 diabetes in children and adolescents. Pediatr Diabetes 2008;9:512–26.Google Scholar

  • 18.

    Urakami T, Morimoto S, Nitadori Y, Harada K, Owada M, et al. Urine glucose screening program at schools in Japan to detect children with diabetes and its outcome-incidence and clinical characteristics of childhood type 2 diabetes in Japan. Pediatr Res 2007;61:141–5.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 19.

    Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, et al. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Invest 2012;3:39–40.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Yorifuji T, Fujimaru R, Hosokawa Y, Tamagawa N, Shiozaki M, et al. Comprehensive molecular analysis of Japanese patients with pediatric-onset MODY-type diabetes mellitus. Pediatr Diabetes 2012;13:26–32.CrossrefWeb of SciencePubMedGoogle Scholar

  • 21.

    Winter WE. Molecular and biochemical analysis of the MODY syndrome. Pediatr Diabetes 2000;1:88–117.Google Scholar

  • 22.

    Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, et al. Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 1996;45:1503–10.Google Scholar

  • 23.

    Lehto M, Tuomi T, Mahtani MM, Widén E, Forsblom C, et al. Characterization of the MODY phenotype. J Clin Invest 1997;99:582–91.PubMedCrossrefGoogle Scholar

  • 24.

    Shehadeh N, Zuckerman-Levin N, Daich E. Can GLP-1 preparations be used in children and adolescents with diabetes mellitus? Pediatric Endocr Rev 2014;11:324–7.Google Scholar

  • 25.

    Bergenstal RM, Wysham C, MacConell L, Malloy J, Walsh B, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjust to metformin for treatment of type 2 diabetes (DURATION-2): a randomized trial. Lancet 2010;376:431–9.Web of ScienceGoogle Scholar

  • 26.

    Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, et al. Liraglitide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycemic control with metformin: a 26-week, randomized, parallel-group, open-label trial. Lancet 2010;375:1447–56.Google Scholar

  • 27.

    Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, et al. One year of liraglutide treatment offers sustained and more effective glycemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomized, parallel-group, open-label trial. Int J Clin Pract 2011;65:397–407.Web of ScienceGoogle Scholar

  • 28.

    Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract 2007;76:132–8.CrossrefGoogle Scholar

  • 29.

    Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci U S A 2003;100:6825–30.CrossrefGoogle Scholar

  • 30.

    Dukes ID, Sreenan S, Roe MW, Levisetti M, Zhou YP, et al. Defective pancreatic beta cell glycolytic signaling in hepatocyte nuclear factor 1a deficient mice. J Biol Chem 1998;273: 24457–64.Google Scholar

About the article

Corresponding author: Tatsuhiko Urakami, MD, Department of Pediatrics, Nihon University School of Medicine, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8309 Tokyo, Japan, Phone: +81 332931711, Fax: +81 332931798, E-mail:

Received: 2014-05-20

Accepted: 2014-09-05

Published Online: 2014-10-18

Published in Print: 2015-03-01

Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 28, Issue 3-4, Pages 327–331, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2014-0211.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in