Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Perinatal Medicine

Official Journal of the World Association of Perinatal Medicine

Editor-in-Chief: Dudenhausen, MD, FRCOG, Joachim W.

Ed. by Bancalari, Eduardo / Chappelle, Joseph / Chervenak, Frank A. / Genc, Mehmet R. / Greenough, Anne / Grunebaum, Amos / Konje, Justin C. / Kurjak M.D., Asim / Romero, Roberto

9 Issues per year

IMPACT FACTOR 2017: 1.558
5-year IMPACT FACTOR: 1.653

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.594
Source Normalized Impact per Paper (SNIP) 2017: 0.684

See all formats and pricing
More options …
Volume 45, Issue 5


Growth attainment in German children born preterm, and cardiovascular risk factors in adolescence. Analysis of the population representative KiGGS data

Renate L. Bergmann
  • Corresponding author
  • Department of Obstetrics, Charité Universitätsmedizin Berlin, D-13353 Berlin, Germany, Tel.:+49-30-450564101
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karl E. Bergmann / Rolf Richter / Martin Schlaud
  • Department of Epidemiology and Health Monitoring, Robert Koch-Institute Berlin, Postfach 65 02 61, D-13302 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Henrich / Alexander Weichert
Published Online: 2017-02-25 | DOI: https://doi.org/10.1515/jpm-2016-0294



To compare the growth attainment of preterm children and their cardiovascular risk factors at adolescence with the values measured in term children in Germany.


About 17,641 children aged 0 to <18 years were studied between 2003 and 2006 in the population representative German KiGGS survey (“German Health Interview and Examination Survey for Children and Adolescents”) using questionnaires, physical examinations, standardized anthropometric and blood pressure measurements, and blood sample analyses. Analysis of covariance (ANCOVA) was employed for the analyses of anthropometric parameters.


About 11.8% of the 16,737 children with complete and valid data had been born preterm. After adjustment for covariates the estimated z-scores over the total age range were larger in term compared to preterm children for length/height (P<0.001; estimated difference B=0.277, 95% CI 0.191–0.362), head circumference (P<0.001; B=0.238, 95% CI 0.144–0.333), BMI (P=0.001; B=0.160, 95% CI 0.069–0.252), and skinfold thickness (P=0.220; B=0.058, 95% CI −0.035 to 0.151). The onset of pubertal development was slightly (but not significantly) earlier in term compared to preterm children. At 14 to <18 years, anthropometric and biochemical indicators of cardiovascular diseases were not worse in preterm compared to term children.


Preterm-born German adolescents remained significantly shorter, lighter, and had a smaller head circumference than term-born adolescents, but the risk indicators for cardiovascular diseases were not higher.

Keywords: Cardiovascular risk; German children; growth; KiGGS; preterm


  • [1]

    Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012;379:2162–72.Web of ScienceGoogle Scholar

  • [2]

    Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. for the Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012;379:2151–61.Google Scholar

  • [3]

    Bayman E, Drake AJ, Piyasena CH. Prematurity and programming of cardiovascular disease risk: a future challenge for public health? Arch Dis Child Fetal Neonatal Ed. 2014;99:F510–4.Web of ScienceGoogle Scholar

  • [4]

    Babson SG. Growth of low-birth-weight infants. J Pediatr. 1970;77:11–8.Google Scholar

  • [5]

    Ross G, Lipper EG, Auld PAM. Physical growth and developmental outcome in very low birth weight premature infants at 3 years of age. J Pediatr. 1985;107:284–6.Google Scholar

  • [6]

    Farooqi A, Hägglöf B, Sedin G, MD, Gothefors L, Serenius F. Growth in 10- to 12-year-old children born at 23 to 25 weeks’ gestation in the 1990s: a Swedish national prospective follow-up study. Pediatrics. 2006;118:e1452–65.Google Scholar

  • [7]

    Renes JS, Willemsen RH, Mulder JC, Bakker-van Waarde WM, Rotteveel J, Ostdijk ECAM, et al. New insights into factors influencing adult height in short SGA children: Results of a large multicentre growth hormone trial. Clin Endocrinol. 2015;82:854–61.Google Scholar

  • [8]

    Johnson MJ, Wootton SA, Leaf AA, Jackson AA. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics. 2012;130:e640–8.Web of ScienceGoogle Scholar

  • [9]

    Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, et al. Adiposity and hyperinsulinemia in Indians are present at birth. Clin Endocrinol Metabol. 2002;87:5575–80.Google Scholar

  • [10]

    Barker DJP. The developmental origins of adult disease. Review. J Am Coll Nutr. 2004;23:588S–95SGoogle Scholar

  • [11]

    Pilgaard K, Færch K, Carstensen B, Poulsen P, Pisinger C, Pedersen O, et al. Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes. Diabetologia. 2010;53:2526–30.Web of ScienceGoogle Scholar

  • [12]

    Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A. Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr. 2003;77:726–30.Google Scholar

  • [13]

    Rossi P, Gaudart J, Frances Y. Respective roles of preterm birth and fetal growth restriction in blood pressure and arterial stiffness in adolescence. J Adolescent Health. 2011;48:520–2.Web of ScienceGoogle Scholar

  • [14]

    Bergmann KE, Thefeld W, Kurth B-M. Der Kinder- und Jugendgesundheitssurvey soll die gesundheitliche Situation der Kinder und Jugendlichen in Deutschland beschreiben. Monatsschrift Kinderheilkunde. 2002;150:1543–5.Google Scholar

  • [15]

    Weichert A, Weichert TM, Bergmann RL, Henrich W, Kalache KD, Richter R, et al. Einflussfaktoren auf die Frühgeburt in Deutschland – Analyse der für Deutschland repräsentativen KiGGS-Daten. Factors for Preterm Births in Germany – An Analysis of Representative German Data (KiGGS). Geburtshilfe und Frauenheilkunde. 2015;75:819–26.Google Scholar

  • [16]

    Kurth BM, Kamtsiuris P, Hölling H, Schlaud M. The challenge of comprehensively mapping children’s health in a nation-wide health survey: design of the German KiGGS-Study. BMC Public Health. 2008;8:196–203.Web of ScienceGoogle Scholar

  • [17]

    Neuhauser H, Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Kurth B-M. Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS), 2nd ed. Robert Koch-Institute Berlin, 2013.Google Scholar

  • [18]

    Kahl H, Schaffrath Rosario A, Schlaud M. Sexuelle Reifung von Kindern und Jugendlichen in Deutschland. Ergebnisse des Kinder- und Jugendgesundheitssurveys (KiGGS). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz. 2007;50:677–85.Google Scholar

  • [19]

    Thierfelder W, Dortschy R, Hintzpeter B, Kahl H, Scheidt-Nave C. Biochemische Messparameter im Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz. 2007;50:757–70.Google Scholar

  • [20]

    Bergmann KE, Schlack R, von Dewitz Ch, Dippelhofer A, Kurth B-M, Eichstädt H. Ethische und rechtliche Aspekte der epidemiologischen Forschung mit Kindern und Jugendlichen in Deutschland am Beispiel des Kinder- und Jugendgesundheitssurveys. Ethik in der Medizin. 2004;16:22–36.Google Scholar

  • [21]

    De Onis M, Onyango AW, Borghi E, Siyam A, Nishida Ch, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. B World Health Organ. 2007;85:660–7.Web of ScienceGoogle Scholar

  • [22]

    Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, et al. Perzentile für den Body-Mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift für Kinderheilkunde. 2001;149:807–18.Google Scholar

  • [23]

    Walther FJ, den Ouden AL, Verloove-Vanhorick SP. Looking back in time: outcome of a national cohort of very preterm infants born in The Netherlands in 1983. Early Hum Dev. 2000;59: 175–91.Google Scholar

  • [24]

    Singer D. Langzeitüberleben von Frühgeborenen. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz. 2012;55:568–75.Google Scholar

  • [25]

    Hutcheon JA, Platt RW. The missing data problem in birth weight percentiles and thresholds for ‘‘small for-gestational-age’’. Am J Epidemiol. 2008;167:786–92.Web of ScienceGoogle Scholar

  • [26]

    Kramer MS. Comment. Born too small or too soon. Lancet Global Health. 2013;1:e7–8.Google Scholar

  • [27]

    Cole TJ. The development of growth references and growth charts. Ann Hum Biol. 2012;39:382–4.Web of ScienceGoogle Scholar

  • [28]

    Euser AM, de Wit CC, Finken MJJ, Rijken M, Wit JM. Growth of preterm born children. Horm Res. 2008;70:319–32.Google Scholar

  • [29]

    Hack M, Schluchter M, Cartar L, Rahman M, Cuttle L, Borawski E. Growth of very low birth weight infants to age 20 years. Pediatrics. 2003;112:e30–8.Google Scholar

  • [30]

    Gale CR, Finbar J, O’Callaghan FJ, Bredow M, Martyn CN, the Avon Longitudinal Study of Parents and Children Study Team. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118:1486–92.Google Scholar

  • [31]

    Ranke MB, Krägeloh-Mann I, Vollmer B. Growth, head growth, and neurocognitive outcome in children born very preterm: methodological aspects and selected results. Dev Med Child Neurol. 2015;57:23–8.Web of ScienceGoogle Scholar

  • [32]

    Kirchengast S. Gender differences in body composition from childhood to old age: an evolutionary point of view. J Life Sci. 2010;2:1–10.Google Scholar

  • [33]

    Lucas A. Long-term programming effects of early nutrition. Implications for the preterm infant. J Perinatol. 2005;25: S2–6.Google Scholar

  • [34]

    Wells JCK, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc. 2007;66:423–34.Web of ScienceGoogle Scholar

  • [35]

    Bergmann RL, Bergmann KE, Dudenhausen JW. Undernutrition and growth restriction in pregnancy. In: Barker DJP, Bergmann RL, Ogra PL, editors. The window of opportunity: pre-pregnancy to 24 months of age. Nestlé Nutrition Workshop Series Pediatric Program, Vol. 61, Basel: Karger AG, 2008:103–21.Google Scholar

  • [36]

    Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. Br Med J. 1991;33:1019–22.Google Scholar

About the article

Received: 2016-09-04

Accepted: 2016-11-30

Published Online: 2017-02-25

Published in Print: 2017-07-26

Author’s Statement

Conflict of interest: Authors state no conflict of interest.

Material and methods: Informed consent: Informed consent has been obtained from all individuals included in this study.

Ethical approval: The research related to human subject use has complied with all the relevant national regulations, and institutional policies, and is in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

Citation Information: Journal of Perinatal Medicine, Volume 45, Issue 5, Pages 619–626, ISSN (Online) 1619-3997, ISSN (Print) 0300-5577, DOI: https://doi.org/10.1515/jpm-2016-0294.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in