Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Perinatal Medicine

Official Journal of the World Association of Perinatal Medicine

Editor-in-Chief: Dudenhausen, MD, FRCOG, Joachim W.

Ed. by Bancalari, Eduardo / Chappelle, Joseph / Chervenak, Frank A. / D'Addario , Vincenzo / Genc, Mehmet R. / Greenough, Anne / Grunebaum, Amos / Konje, Justin C. / Kurjak M.D., Asim / Romero, Roberto / Zalud, MD PhD, Ivica


IMPACT FACTOR 2018: 1.361
5-year IMPACT FACTOR: 1.578

CiteScore 2018: 1.29

SCImago Journal Rank (SJR) 2018: 0.522
Source Normalized Impact per Paper (SNIP) 2018: 0.602

Online
ISSN
1619-3997
See all formats and pricing
More options …
Volume 46, Issue 1

Issues

The combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome increases the risk of intraventricular hemorrhage in preterm neonates

Kyung Joon Oh
  • Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
  • Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jee Yoon Park
  • Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ JoonHo Lee / Joon-Seok Hong
  • Corresponding author
  • Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
  • Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberto Romero
  • Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
  • Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
  • Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
  • Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bo Hyun Yoon
  • Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-26 | DOI: https://doi.org/10.1515/jpm-2016-0348

Abstract

Objective:

To evaluate the impact of combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome (RDS) on the development of intraventricular hemorrhage (IVH) in preterm neonates.

Methods:

This retrospective cohort study includes 207 consecutive preterm births (24.0–33.0 weeks of gestation). Intra-amniotic inflammation was defined as an amniotic fluid matrix metalloproteinase-8 concentration >23 ng/mL. According to McMenamin’s classification, IVH was defined as grade II or higher when detected by neurosonography within the first weeks of life.

Results:

(1) IVH was diagnosed in 6.8% (14/207) of neonates in the study population; (2) IVH was frequent among newborns exposed to intra-amniotic inflammation when followed by postnatal RDS [33% (6/18)]. The frequency of IVH was 7% (8/115) among neonates exposed to either of these conditions – intra-amniotic inflammation or RDS – and 0% (0/64) among those who were not exposed to these conditions; and (3) Neonates exposed to intra-amniotic inflammation and postnatal RDS had a significantly higher risk of IVH than those with only intra-amniotic inflammation [odds ratio (OR) 4.6, 95% confidence interval (CI) 1.1–19.3] and those with RDS alone (OR 5.6, 95% CI 1.0–30.9), after adjusting for gestational age.

Conclusion:

The combined exposure to intra-amniotic inflammation and postnatal RDS markedly increased the risk of IVH in preterm neonates.

Keywords: Brain injury; hypoxic-ischemic injury; intra-amniotic inflammation; periventricular-intraventricular hemorrhage; preterm birth

References

  • [1]

    Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179:194–202.PubMedCrossrefGoogle Scholar

  • [2]

    McMenamin JB, Shackelford GD, Volpe JJ. Outcome of neonatal intraventricular hemorrhage with periventricular echodense lesions. Ann Neurol. 1984;15:285–90.CrossrefPubMedGoogle Scholar

  • [3]

    Ment LR, Vohr B, Allan W, Katz KH, Schneider KC, Westerveld M, et al. Change in cognitive function over time in very low-birth-weight infants. J Am Med Assoc. 2003;289:705–11.CrossrefGoogle Scholar

  • [4]

    Vergani P, Locatelli A, Doria V, Assi F, Paterlini G, Pezzullo JC, et al. Intraventricular hemorrhage and periventricular leukomalacia in preterm infants. Obstet Gynecol. 2004;104:225–31.PubMedCrossrefGoogle Scholar

  • [5]

    Yoon BH, Romero R, Kim CJ, Jun JK, Gomez R, Choi JH, et al. Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am J Obstet Gynecol. 1995;172:960–70.CrossrefPubMedGoogle Scholar

  • [6]

    Vohr B, Ment LR. Intraventricular hemorrhage in the preterm infant. Early Hum Dev. 1996;44:1–16.PubMedCrossrefGoogle Scholar

  • [7]

    Perlman JM, Broyles RS, Rogers CG. Neonatal neurologic characteristics of preterm twin infants <1,250 gm birth weight. Pediatr Neurol. 1997;17:322–6.CrossrefPubMedGoogle Scholar

  • [8]

    Baschat AA, Gembruch U, Viscardi RM, Gortner L, Harman CR. Antenatal prediction of intraventricular hemorrhage in fetal growth restriction: what is the role of Doppler? Ultrasound Obstet Gynecol. 2002;19:334–9.CrossrefPubMedGoogle Scholar

  • [9]

    Valcamonico A, Accorsi P, Sanzeni C, Martelli P, La Boria P, Cavazza A, et al. Mid- and long-term outcome of extremely low birth weight (ELBW) infants: an analysis of prognostic factors. J Matern Fetal Neonatal Med. 2007;20:465–71.CrossrefPubMedGoogle Scholar

  • [10]

    Kent AL, Wright IM, Abdel-Latif ME, New South W, Australian Capital Territory Neonatal Intensive Care Units Audit G. Mortality and adverse neurologic outcomes are greater in preterm male infants. Pediatrics. 2012;129:124–31.CrossrefGoogle Scholar

  • [11]

    Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–56.CrossrefPubMedGoogle Scholar

  • [12]

    Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136:1132–43.CrossrefPubMedGoogle Scholar

  • [13]

    Payne AH, Hintz SR, Hibbs AM, Walsh MC, Vohr BR, Bann CM, et al. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013;167:451–9.PubMedCrossrefGoogle Scholar

  • [14]

    Larroque B, Marret S, Ancel PY, Arnaud C, Marpeau L, Supernant K, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr. 2003;143:477–83.PubMedCrossrefGoogle Scholar

  • [15]

    Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174:1433–40.PubMedCrossrefGoogle Scholar

  • [16]

    Armstrong DL, Sauls CD, Goddard-Finegold J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am J Dis Child. 1987;141:617–21.PubMedGoogle Scholar

  • [17]

    Volpe JJ. Intraventricular hemorrhage and brain injury in the premature infant. Neuropathology and pathogenesis. Clin Perinatol. 1989;16:361–86.PubMedGoogle Scholar

  • [18]

    Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ, et al. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics. 2000;105:1216–26.CrossrefPubMedGoogle Scholar

  • [19]

    Futagi Y, Toribe Y, Ogawa K, Suzuki Y. Neurodevelopmental outcome in children with intraventricular hemorrhage. Pediatr Neurol. 2006;34:219–24.PubMedCrossrefGoogle Scholar

  • [20]

    Vohr B, Allan WC, Scott DT, Katz KH, Schneider KC, Makuch RW, et al. Early-onset intraventricular hemorrhage in preterm neonates: incidence of neurodevelopmental handicap. Semin Perinatol. 1999;23:212–7.CrossrefPubMedGoogle Scholar

  • [21]

    Allan WC, Vohr B, Makuch RW, Katz KH, Ment LR. Antecedents of cerebral palsy in a multicenter trial of indomethacin for intraventricular hemorrhage. Arch Pediatr Adolesc Med. 1997;151:580–5.CrossrefGoogle Scholar

  • [22]

    Dunin-Wasowicz D, Rowecka-Trzebicka K, Milewska-Bobula B, Kassur-Siemienska B, Bauer A, Idzik M, et al. Risk factors for cerebral palsy in very low-birthweight infants in the 1980s and 1990s. J Child Neurol. 2000;15:417–20.PubMedCrossrefGoogle Scholar

  • [23]

    Msall ME, Buck GM, Rogers BT, Merke D, Catanzaro NL, Zorn WA. Risk factors for major neurodevelopmental impairments and need for special education resources in extremely premature infants. J Pediatr. 1991;119:606–14.CrossrefPubMedGoogle Scholar

  • [24]

    Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr. 2006;149:169–73.PubMedCrossrefGoogle Scholar

  • [25]

    Gleissner M, Jorch G, Avenarius S. Risk factors for intraventricular hemorrhage in a birth cohort of 3721 premature infants. J Perinat Med. 2000;28:104–10.Google Scholar

  • [26]

    Riskin A, Riskin-Mashiah S, Bader D, Kugelman A, Lerner-Geva L, Boyko V, et al. Delivery mode and severe intraventricular hemorrhage in single, very low birth weight, vertex infants. Obstet Gynecol. 2008;112:21–8.CrossrefPubMedGoogle Scholar

  • [27]

    Bhandari V, Buhimschi CS, Han CS, Lee SY, Pettker CM, Campbell KH, et al. Cord blood erythropoietin and interleukin-6 for prediction of intraventricular hemorrhage in the preterm neonate. J Matern Fetal Neonatal Med. 2011;24:673–9.CrossrefPubMedGoogle Scholar

  • [28]

    Kwak HM, Shin MY, Cha HH, Choi SJ, Lee JH, Kim JS, et al. The efficacy of cefazolin plus macrolide (erythromycin or clarithromycin) versus cefazolin alone in neonatal morbidity and placental inflammation for women with preterm premature rupture of membranes. Placenta. 2013;34:346–52.PubMedCrossrefGoogle Scholar

  • [29]

    Viscardi RM, Hashmi N, Gross GW, Sun CC, Rodriguez A, Fairchild KD. Incidence of invasive Ureaplasma in VLBW infants: relationship to severe intraventricular hemorrhage. J Perinatol. 2008;28:759–65.CrossrefPubMedGoogle Scholar

  • [30]

    Kasper DC, Mechtler TP, Bohm J, Petricevic L, Gleiss A, Spergser J, et al. In utero exposure to Ureaplasma spp. is associated with increased rate of bronchopulmonary dysplasia and intraventricular hemorrhage in preterm infants. J Perinat Med. 2011;39:331–6.PubMedGoogle Scholar

  • [31]

    Martinez E, Figueroa R, Garry D, Visintainer P, Patel K, Verma U, et al. Elevated amniotic fluid interleukin-6 as a predictor of neonatal periventricular leukomalacia and intraventricular Hemorrhage. J Matern Fetal Investig. 1998;8:101–7.PubMedGoogle Scholar

  • [32]

    Thomas W, Speer CP. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology. 2011;99:177–87.CrossrefPubMedGoogle Scholar

  • [33]

    Leviton A, Dammann O, Durum SK. The adaptive immune response in neonatal cerebral white matter damage. Ann Neurol. 2005;58:821–8.PubMedCrossrefGoogle Scholar

  • [34]

    Verma U, Tejani N, Klein S, Reale MR, Beneck D, Figueroa R, et al. Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate. Am J Obstet Gynecol. 1997;176:275–81.CrossrefPubMedGoogle Scholar

  • [35]

    Linder N, Haskin O, Levit O, Klinger G, Prince T, Naor N, et al. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: a retrospective case-control study. Pediatrics. 2003;111:e590–5.PubMedCrossrefGoogle Scholar

  • [36]

    Morales WJ, Koerten J. Obstetric management and intraventricular hemorrhage in very-low-birth-weight infants. Obstet Gynecol. 1986;68:35–40.PubMedGoogle Scholar

  • [37]

    Ferrari B, Tonni G, Luzietti R, Ciarlini G, Vadora E, Merialdi A. Neonatal complications and risk of intraventricular-periventricular hemorrhage. Clin Exp Obstet Gynecol. 1992;19:253–8.PubMedGoogle Scholar

  • [38]

    Levene MI, Fawer CL, Lamont RF. Risk factors in the development of intraventricular haemorrhage in the preterm neonate. Arch Dis Child. 1982;57:410–7.CrossrefPubMedGoogle Scholar

  • [39]

    Heljic S, Maksic H, Buljina A. Hemorrhagic and hypoxic-ischemic brain lesions in premature infants on artificial ventilation. Med Arh. 2000;54:265–7.PubMedGoogle Scholar

  • [40]

    Hill A, Volpe JJ. Seizures, hypoxic-ischemic brain injury, and intraventricular hemorrhage in the newborn. Ann Neurol. 1981;10:109–21.PubMedCrossrefGoogle Scholar

  • [41]

    Lou HC. Perinatal hypoxic-ischaemic brain damage and intraventricular haemorrhage. Baillieres Clin Obstet Gynaecol. 1988;2:213–20.PubMedCrossrefGoogle Scholar

  • [42]

    Gomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997;11:135–76.CrossrefPubMedGoogle Scholar

  • [43]

    Romero R, Mazor M, Wu YK, Sirtori M, Oyarzun E, Mitchell MD, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988;12:262–79.PubMedGoogle Scholar

  • [44]

    Romero R, Sirtori M, Oyarzun E, Avila C, Mazor M, Callahan R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989;161:817–24.CrossrefPubMedGoogle Scholar

  • [45]

    Romero R, Shamma F, Avila C, Jimenez C, Callahan R, Nores J, et al. Infection and labor. VI. Prevalence, microbiology, and clinical significance of intraamniotic infection in twin gestations with preterm labor. Am J Obstet Gynecol. 1990;163:757–61.PubMedGoogle Scholar

  • [46]

    Angus SR, Segel SY, Hsu CD, Locksmith GJ, Clark P, Sammel MD, et al. Amniotic fluid matrix metalloproteinase-8 indicates intra-amniotic infection. Am J Obstet Gynecol. 2001;185: 1232–8.CrossrefPubMedGoogle Scholar

  • [47]

    Gibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992;166:1515–28.CrossrefPubMedGoogle Scholar

  • [48]

    Yoon BH, Romero R, Park JS, Chang JW, Kim YA, Kim JC, et al. Microbial invasion of the amniotic cavity with Ureaplasma urealyticum is associated with a robust host response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol. 1998;179:1254–60.CrossrefPubMedGoogle Scholar

  • [49]

    Yoon BH, Romero R, Moon JB, Shim SS, Kim M, Kim G, et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001;185:1130–6.PubMedCrossrefGoogle Scholar

  • [50]

    Yoon BH, Romero R, Kim M, Kim EC, Kim T, Park JS, et al. Clinical implications of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction. Am J Obstet Gynecol. 2000;183:1130–7.CrossrefPubMedGoogle Scholar

  • [51]

    Yoon BH, Chang JW, Romero R. Isolation of Ureaplasma urealyticum from the amniotic cavity and adverse outcome in preterm labor. Obstet Gynecol. 1998;92:77–82.PubMedCrossrefGoogle Scholar

  • [52]

    Oh KJ, Lee SE, Jung H, Kim G, Romero R, Yoon BH. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38:261–8.PubMedGoogle Scholar

  • [53]

    Gomez-Lopez N, Romero R, Plazyo O, Panaitescu B, Furcron AE, Miller D, et al. Intra-amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol. 2016;75:3–7.PubMedCrossrefGoogle Scholar

  • [54]

    Kim SM, Romero R, Lee J, Chaemsaithong P, Lee MW, Chaiyasit N, et al. About one-half of early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis. J Matern Fetal Neonatal Med. 2016;29:2414–21.PubMedGoogle Scholar

  • [55]

    Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345:760–5.PubMedCrossrefGoogle Scholar

  • [56]

    Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11:317–26.CrossrefPubMedGoogle Scholar

  • [57]

    Shim SS, Romero R, Hong JS, Park CW, Jun JK, Kim BI, et al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 2004;191:1339–45.CrossrefPubMedGoogle Scholar

  • [58]

    Maymon E, Romero R, Chaiworapongsa T, Berman S, Conoscenti G, Gomez R, et al. Amniotic fluid matrix metalloproteinase-8 in preterm labor with intact membranes. Am J Obstet Gynecol. 2001;185:1149–55.CrossrefPubMedGoogle Scholar

  • [59]

    Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213:S29–52.CrossrefPubMedGoogle Scholar

  • [60]

    Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Gomez R, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010;23:1344–59.PubMedCrossrefGoogle Scholar

  • [61]

    Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113 Suppl 3:17–42.PubMedGoogle Scholar

  • [62]

    DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3:e3056.CrossrefPubMedGoogle Scholar

  • [63]

    Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997;177:797–802.PubMedCrossrefGoogle Scholar

  • [64]

    Dean JM, Farrag D, Zahkouk SA, El Zawahry EY, Hagberg H, Kjellmer I, et al. Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience. 2009;160:606–15.PubMedCrossrefGoogle Scholar

  • [65]

    Gavilanes AW, Strackx E, Kramer BW, Gantert M, Van den Hove D, Steinbusch H, et al. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol. 2009;200:437 e1–8.CrossrefGoogle Scholar

  • [66]

    Lodygensky GA, West T, Stump M, Holtzman DM, Inder TE, Neil JJ. In vivo MRI analysis of an inflammatory injury in the developing brain. Brain Behav Immun. 2010;24:759–67.PubMedCrossrefGoogle Scholar

  • [67]

    Wallace K, Veerisetty S, Paul I, May W, Miguel-Hidalgo JJ, Bennett W. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats. Dev Neurosci. 2010;32:302–12.PubMedCrossrefGoogle Scholar

  • [68]

    Sarkar S, Kaplan C, Wiswell TE, Spitzer AR. Histological chorioamnionitis and the risk of early intraventricular hemorrhage in infants born <or =28 weeks gestation. J Perinatol. 2005;25:749–52.CrossrefPubMedGoogle Scholar

  • [69]

    Richardson BS, Wakim E, daSilva O, Walton J. Preterm histologic chorioamnionitis: impact on cord gas and pH values and neonatal outcome. Am J Obstet Gynecol. 2006;195:1357–65.CrossrefPubMedGoogle Scholar

  • [70]

    Rocha G, Proenca E, Quintas C, Rodrigues T, Guimaraes H. Chorioamnionitis and brain damage in the preterm newborn. J Matern Fetal Neonatal Med. 2007;20:745–9.CrossrefPubMedGoogle Scholar

  • [71]

    Moss TJ, Nitsos I, Kramer BW, Ikegami M, Newnham JP, Jobe AH. Intra-amniotic endotoxin induces lung maturation by direct effects on the developing respiratory tract in preterm sheep. Am J Obstet Gynecol. 2002;187:1059–65.CrossrefPubMedGoogle Scholar

  • [72]

    Jobe AH, Newnham JP, Willet KE, Moss TJ, Gore Ervin M, Padbury JF, et al. Endotoxin-induced lung maturation in preterm lambs is not mediated by cortisol. Am J Respir Crit Care Med. 2000;162:1656–61.PubMedCrossrefGoogle Scholar

  • [73]

    Shimoya K, Taniguchi T, Matsuzaki N, Moriyama A, Murata Y, Kitajima H, et al. Chorioamnionitis decreased incidence of respiratory distress syndrome by elevating fetal interleukin-6 serum concentration. Hum Reprod. 2000;15:2234–40.PubMedCrossrefGoogle Scholar

  • [74]

    Lee J, Seong HS, Kim BJ, Jun JK, Romero R, Yoon BH. Evidence to support that spontaneous preterm labor is adaptive in nature: neonatal RDS is more common in “indicated” than in “spontaneous” preterm birth. J Perinat Med. 2009;37:53–8.Google Scholar

  • [75]

    Tsuda H, Takahashi Y, Iwagaki S, Kawabata I, Hayakawa H, Kotani T, et al. Intra-amniotic infection increases amniotic lamellar body count before 34 weeks of gestation. J Matern Fetal Neonatal Med. 2010;23:1230–6.PubMedCrossrefGoogle Scholar

  • [76]

    Morken NH, Kallen K, Jacobsson B. Outcomes of preterm children according to type of delivery onset: a nationwide population-based study. Paediatr Perinat Epidemiol. 2007;21:458–64.CrossrefPubMedGoogle Scholar

  • [77]

    Park JS, Romero R, Yoon BH, Moon JB, Oh SY, Han SY, et al. The relationship between amniotic fluid matrix metalloproteinase-8 and funisitis. Am J Obstet Gynecol. 2001;185:1156–61.CrossrefPubMedGoogle Scholar

  • [78]

    Salafia CM, Minior VK, Rosenkrantz TS, Pezzullo JC, Popek EJ, Cusick W, et al. Maternal, placental, and neonatal associations with early germinal matrix/intraventricular hemorrhage in infants born before 32 weeks’ gestation. Am J Perinatol. 1995;12:429–36.PubMedCrossrefGoogle Scholar

  • [79]

    Huleihel M, Golan H, Hallak M. Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved. Reprod Biol Endocrinol. 2004;2:17.CrossrefPubMedGoogle Scholar

  • [80]

    Ugwumadu A. Infection and fetal neurologic injury. Curr Opin Obstet Gynecol. 2006;18:106–11.CrossrefPubMedGoogle Scholar

  • [81]

    Perlman JM. White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome. Early Hum Dev. 1998;53:99–120.PubMedCrossrefGoogle Scholar

  • [82]

    Andrews T, Zhang P, Bhat NR. TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res. 1998;54:574–83.PubMedCrossrefGoogle Scholar

  • [83]

    Kahn MA, De Vellis J. Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia. 1994;12:87–98.PubMedCrossrefGoogle Scholar

  • [84]

    Hurwitz AA, Lyman WD, Guida MP, Calderon TM, Berman JW. Tumor necrosis factor alpha induces adhesion molecule expression on human fetal astrocytes. J Exp Med. 1992;176:1631–6.PubMedCrossrefGoogle Scholar

  • [85]

    Cobo T, Palacio M, Martinez-Terron M, Navarro-Sastre A, Bosch J, Filella X, et al. Clinical and inflammatory markers in amniotic fluid as predictors of adverse outcomes in preterm premature rupture of membranes. Am J Obstet Gynecol. 2011;205:126 e1–8.CrossrefGoogle Scholar

  • [86]

    Kim KW, Romero R, Park HS, Park CW, Shim SS, Jun JK, et al. A rapid matrix metalloproteinase-8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am J Obstet Gynecol. 2007;197:292 e1–5.CrossrefGoogle Scholar

  • [87]

    Jacobsson B, Mattsby-Baltzer I, Andersch B, Bokstrom H, Holst RM, Nikolaitchouk N, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2003;82:423–31.CrossrefGoogle Scholar

  • [88]

    Jacobsson B, Mattsby-Baltzer I, Andersch B, Bokstrom H, Holst RM, Wennerholm UB, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women in preterm labor. Acta Obstet Gynecol Scand. 2003;82:120–8.CrossrefGoogle Scholar

  • [89]

    Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi J-H, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177:19–26.PubMedCrossrefGoogle Scholar

  • [90]

    Oh KJ, Park KH, Kim SN, Jeong EH, Lee SY, Yoon HY. Predictive value of intra-amniotic and serum markers for inflammatory lesions of preterm placenta. Placenta. 2011;32:732–6.PubMedCrossrefGoogle Scholar

  • [91]

    Lee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007;197:294 e1–6.CrossrefGoogle Scholar

  • [92]

    Lee SE, Romero R, Park CW, Jun JK, Yoon BH. The frequency and significance of intraamniotic inflammation in patients with cervical insufficiency. Am J Obstet Gynecol. 2008;198:633 e1–8.CrossrefGoogle Scholar

  • [93]

    Nien JK, Yoon BH, Espinoza J, Kusanovic JP, Erez O, Soto E, et al. A rapid MMP-8 bedside test for the detection of intra-amniotic inflammation identifies patients at risk for imminent preterm delivery. Am J Obstet Gynecol. 2006;195:1025–30.CrossrefPubMedGoogle Scholar

  • [94]

    Gotsch F, Romero R, Chaiworapongsa T, Erez O, Vaisbuch E, Espinoza J, et al. Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008;21:605–16.PubMedCrossrefGoogle Scholar

  • [95]

    Holst RM, Laurini R, Jacobsson B, Samuelsson E, Savman K, Doverhag C, et al. Expression of cytokines and chemokines in cervical and amniotic fluid: relationship to histological chorioamnionitis. J Matern Fetal Neonatal Med. 2007;20:885–93.CrossrefPubMedGoogle Scholar

  • [96]

    Mazaki-Tovi S, Romero R, Kusanovic JP, Erez O, Gotsch F, Mittal P, et al. Visfatin/Pre-B cell colony-enhancing factor in amniotic fluid in normal pregnancy, spontaneous labor at term, preterm labor and prelabor rupture of membranes: an association with subclinical intrauterine infection in preterm parturition. J Perinat Med. 2008;36:485–96.PubMedGoogle Scholar

  • [97]

    Bashiri A, Horowitz S, Huleihel M, Hackmon R, Dukler D, Mazor M. Elevated concentrations of interleukin-6 in intra-amniotic infection with Ureaplasma urealyticum in asymptomatic women during genetic amniocentesis. Acta Obstet Gynecol Scand. 1999;78:379–82.CrossrefPubMedGoogle Scholar

  • [98]

    Biggio JR, Jr., Ramsey PS, Cliver SP, Lyon MD, Goldenberg RL, Wenstrom KD. Midtrimester amniotic fluid matrix metalloproteinase-8 (MMP-8) levels above the 90th percentile are a marker for subsequent preterm premature rupture of membranes. Am J Obstet Gynecol. 2005;192:109–13.CrossrefPubMedGoogle Scholar

  • [99]

    Fortunato SJ, Menon R. Screening of novel matrix metalloproteinases (MMPs) in human fetal membranes. J Assist Reprod Genet. 2002;19:483–6.PubMedCrossrefGoogle Scholar

  • [100]

    Maymon E, Romero R, Pacora P, Gomez R, Athayde N, Edwin S, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000;183:94–9.CrossrefPubMedGoogle Scholar

  • [101]

    Andrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R, Cassell GH. Amniotic fluid interleukin-6: correlation with upper genital tract microbial colonization and gestational age in women delivered after spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 1995;173:606–12.CrossrefPubMedGoogle Scholar

  • [102]

    Coultrip LL, Lien JM, Gomez R, Kapernick P, Khoury A, Grossman JH. The value of amniotic fluid interleukin-6 determination in patients with preterm labor and intact membranes in the detection of microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 1994;171:901–11.CrossrefPubMedGoogle Scholar

  • [103]

    Romero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993;30:167–83.PubMedCrossrefGoogle Scholar

  • [104]

    Park CW, Lee SM, Park JS, Jun JK, Romero R, Yoon BH. The antenatal identification of funisitis with a rapid MMP-8 bedside test. J Perinat Med. 2008;36:497–502.PubMedGoogle Scholar

  • [105]

    Romero R, Quintero R, Nores J, Avila C, Mazor M, Hanaoka S, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol. 1991;165:821–30.PubMedCrossrefGoogle Scholar

  • [106]

    Yoon BH, Jun JK, Park KH, Syn HC, Gomez R, Romero R. Serum C-reactive protein, white blood cell count, and amniotic fluid white blood cell count in women with preterm premature rupture of membranes. Obstet Gynecol. 1996;88:1034–40.CrossrefPubMedGoogle Scholar

  • [107]

    Yoon BH, Yang SH, Jun JK, Park KH, Kim CJ, Romero R. Maternal blood C-reactive protein, white blood cell count, and temperature in preterm labor: a comparison with amniotic fluid white blood cell count. Obstet Gynecol. 1996;87:231–7.CrossrefPubMedGoogle Scholar

  • [108]

    Pacora P, Chaiworapongsa T, Maymon E, Kim YM, Gomez R, Yoon BH, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11:18–25.PubMedCrossrefGoogle Scholar

  • [109]

    Kim CJ, Yoon BH, Park SS, Kim MH, Chi JG. Acute funisitis of preterm but not term placentas is associated with severe fetal inflammatory response. Hum Pathol. 2001;32:623–9.CrossrefPubMedGoogle Scholar

  • [110]

    Park CW, Moon KC, Park JS, Jun JK, Romero R, Yoon BH. The involvement of human amnion in histologic chorioamnionitis is an indicator that a fetal and an intra-amniotic inflammatory response is more likely and severe: clinical implications. Placenta. 2009;30:56–61.CrossrefPubMedGoogle Scholar

  • [111]

    Romero R, Salafia CM, Athanassiadis AP, Hanaoka S, Mazor M, Sepulveda W, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992;166:1382–8.CrossrefPubMedGoogle Scholar

  • [112]

    Smulian JC, Vintzileos AM, Lai YL, Santiago J, Shen-Schwarz S, Campbell WA. Maternal chorioamnionitis and umbilical vein interleukin-6 levels for identifying early neonatal sepsis. J Matern Fetal Med. 1999;8:88–94.PubMedGoogle Scholar

  • [113]

    Yoon BH, Romero R, Shim JY, Shim SS, Kim CJ, Jun JK. C-reactive protein in umbilical cord blood: a simple and widely available clinical method to assess the risk of amniotic fluid infection and funisitis. J Matern Fetal Neonatal Med. 2003;14:85–90.PubMedCrossrefGoogle Scholar

  • [114]

    Yoon BH, Romero R, Park JS, Kim M, Oh SY, Kim CJ, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000;183:1124–9.PubMedCrossrefGoogle Scholar

  • [115]

    Chaiworapongsa T, Romero R, Kim JC, Kim YM, Blackwell SC, Yoon BH, et al. Evidence for fetal involvement in the pathologic process of clinical chorioamnionitis. Am J Obstet Gynecol. 2002;186:1178–82.CrossrefPubMedGoogle Scholar

  • [116]

    Romero R, Chaemsaithong P, Docheva N, Korzeniewski SJ, Tarca AL, Bhatti G, et al. Clinical chorioamnionitis at term V: umbilical cord plasma cytokine profile in the context of a systemic maternal inflammatory response. J Perinat Med. 2016;44:53–76.PubMedGoogle Scholar

  • [117]

    Moon JB, Kim JC, Yoon BH, Romero R, Kim G, Oh SY, et al. Amniotic fluid matrix metalloproteinase-8 and the development of cerebral palsy. J Perinat Med. 2002;30:301–6.PubMedGoogle Scholar

  • [118]

    Seong HS, Lee SE, Kang JH, Romero R, Yoon BH. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol. 2008;199:375 e1–5.CrossrefGoogle Scholar

  • [119]

    Sampson JE, Theve RP, Blatman RN, Shipp TD, Bianchi DW, Ward BE, et al. Fetal origin of amniotic fluid polymorphonuclear leukocytes. Am J Obstet Gynecol. 1997;176:77–81.PubMedCrossrefGoogle Scholar

  • [120]

    Sun H, Zhou Y, Xiong H, Kang W, Xu B, Liu D, et al. Prognosis of very preterm infants with severe respiratory distress syndrome receiving mechanical ventilation. Lung. 2015;193:249–54.CrossrefPubMedGoogle Scholar

  • [121]

    Vergani P, Patane L, Doria P, Borroni C, Cappellini A, Pezzullo JC, et al. Risk factors for neonatal intraventricular haemorrhage in spontaneous prematurity at 32 weeks gestation or less. Placenta. 2000;21:402–7.CrossrefPubMedGoogle Scholar

  • [122]

    Mullaart RA, Hopman JC, Rotteveel JJ, Daniels O, Stoelinga GB, De Haan AF. Cerebral blood flow fluctuation in neonatal respiratory distress and periventricular haemorrhage. Early Hum Dev. 1994;37:179–85.CrossrefPubMedGoogle Scholar

  • [123]

    Kusuda S, Ito Y, Kim TJ, Miyagi N, Shishida N, Tanaka Y. Cerebral hemodynamics after exogenous surfactant administration for respiratory distress syndrome in piglet model. J Perinat Med. 2000;28:363–71.PubMedGoogle Scholar

  • [124]

    Perlman JM, Goodman S, Kreusser KL, Volpe JJ. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. N Engl J Med. 1985;312:1353–7.PubMedCrossrefGoogle Scholar

  • [125]

    Lemmers PM, Toet M, van Schelven LJ, van Bel F. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome. Exp Brain Res. 2006;173:458–67.PubMedCrossrefGoogle Scholar

  • [126]

    Lauterbach MD, Raz S, Sander CJ. Neonatal hypoxic risk in preterm birth infants: the influence of sex and severity of respiratory distress on cognitive recovery. Neuropsychology. 2001;15:411–20.PubMedCrossrefGoogle Scholar

  • [127]

    Nelson KB, Grether JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol. 1998;179:507–13.CrossrefPubMedGoogle Scholar

  • [128]

    Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience. 2009;158:673–82.CrossrefPubMedGoogle Scholar

  • [129]

    Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G. Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci. 2005;27:134–42.CrossrefPubMedGoogle Scholar

  • [130]

    Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci. 2001;13:1101–6.PubMedCrossrefGoogle Scholar

  • [131]

    Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev. 2002;8:30–8.PubMedCrossrefGoogle Scholar

  • [132]

    Choi EK, Park D, Kim TK, Lee SH, Bae DK, Yang G, et al. Animal models of periventricular leukomalacia. Lab Anim Res. 2011;27:77–84.PubMedCrossrefGoogle Scholar

  • [133]

    Brochu ME, Girard S, Lavoie K, Sebire G. Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: An experimental study. J Neuroinflammation. 2011;8:55.PubMedCrossrefGoogle Scholar

  • [134]

    Maxwell JR, Denson JL, Joste NE, Robinson S, Jantzie LL. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta. 2015;36:1378–84.CrossrefGoogle Scholar

  • [135]

    Jantzie LL, Corbett CJ, Berglass J, Firl DJ, Flores J, Mannix R, et al. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation. 2014;11:131.PubMedCrossrefGoogle Scholar

  • [136]

    Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006:CD004454.PubMedGoogle Scholar

  • [137]

    Deulofeut R, Sola A, Lee B, Buchter S, Rahman M, Rogido M. The impact of vaginal delivery in premature infants weighing less than 1,251 grams. Obstet Gynecol. 2005;105:525–31.CrossrefPubMedGoogle Scholar

  • [138]

    Ment LR, Oh W, Ehrenkranz RA, Philip AG, Duncan CC, Makuch RW. Antenatal steroids, delivery mode, and intraventricular hemorrhage in preterm infants. Am J Obstet Gynecol. 1995;172:795–800.CrossrefPubMedGoogle Scholar

  • [139]

    Dani C, Poggi C, Bertini G, Pratesi S, Di Tommaso M, Scarselli G, et al. Method of delivery and intraventricular haemorrhage in extremely preterm infants. J Matern Fetal Neonatal Med. 2010;23:1419–23.CrossrefPubMedGoogle Scholar

  • [140]

    Minguez-Milio JA, Alcazar JL, Auba M, Ruiz-Zambrana A, Minguez J. Perinatal outcome and long-term follow-up of extremely low birth weight infants depending on the mode of delivery. J Matern Fetal Neonatal Med. 2011;24:1235–8.PubMedCrossrefGoogle Scholar

  • [141]

    Malloy MH, Onstad L, Wright E. The effect of cesarean delivery on birth outcome in very low birth weight infants. National Institute of Child Health and Human Development Neonatal Research Network. Obstet Gynecol. 1991;77:498–503.PubMedGoogle Scholar

About the article

Corresponding author: Joon-Seok Hong, MD, PhD, Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Korea, Phone: +82-31-787-7256, Fax: +82-31-787-4054


Received: 2016-11-01

Accepted: 2017-01-12

Published Online: 2017-06-26

Published in Print: 2018-01-26


Author’s statement

Conflict of interest: Authors state no conflict of interest.

Material and methods: Informed consent: Informed consent has been obtained from all individuals included in this study.

Ethical approval: The research related to human subject use has complied with all the relevant national regulations, and institutional policies, and is in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.


Citation Information: Journal of Perinatal Medicine, Volume 46, Issue 1, Pages 9–20, ISSN (Online) 1619-3997, ISSN (Print) 0300-5577, DOI: https://doi.org/10.1515/jpm-2016-0348.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. O. Bahado‐Singh, J. Sonek, D. McKenna, D. Cool, B. Aydas, O. Turkoglu, T. Bjorndahl, R. Mandal, D. Wishart, P. Friedman, S. F. Graham, and A. Yilmaz
Ultrasound in Obstetrics & Gynecology, 2019, Volume 54, Number 1, Page 110
[2]
Kyung Joon Oh, Roberto Romero, Jee Yoon Park, JoonHo Lee, Agustin Conde-Agudelo, Joon-Seok Hong, and Bo Hyun Yoon
American Journal of Obstetrics and Gynecology, 2019, Volume 221, Number 2, Page 140.e1
[3]
Bo Hyun Yoon, Roberto Romero, Jee Yoon Park, Kyung Joon Oh, JoonHo Lee, Agustin Conde-Agudelo, and Joon-Seok Hong
American Journal of Obstetrics and Gynecology, 2019, Volume 221, Number 2, Page 142.e1
[4]
[5]
Frank van Bel, Josine Vaes, and Floris Groenendaal
Frontiers in Physiology, 2019, Volume 10
[6]
Kyung Joon Oh, Roberto Romero, Jee Yoon Park, Jihyun Kang, Joon-Seok Hong, and Bo Hyun Yoon
Journal of Perinatal Medicine, 2019, Volume 47, Number 3, Page 288
[7]
Wei Ye, Tongqiang Zhang, Yang Shu, Chengzhi Fang, Lili Xie, Kaiwei Peng, and Chunmei Liu
The Journal of Maternal-Fetal & Neonatal Medicine, 2018, Page 1
[8]
Eduardo Villamor-Martinez, Monica Fumagalli, Owais Mohammed Rahim, Sofia Passera, Giacomo Cavallaro, Pieter Degraeuwe, Fabio Mosca, and Eduardo Villamor
Frontiers in Physiology, 2018, Volume 9

Comments (0)

Please log in or register to comment.
Log in