Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Perinatal Medicine

Official Journal of the World Association of Perinatal Medicine

Editor-in-Chief: Dudenhausen, MD, FRCOG, Joachim W.

Ed. by Bancalari, Eduardo / Chappelle, Joseph / Chervenak, Frank A. / D'Addario , Vincenzo / Genc, Mehmet R. / Greenough, Anne / Grunebaum, Amos / Konje, Justin C. / Kurjak M.D., Asim / Romero, Roberto / Zalud, MD PhD, Ivica

IMPACT FACTOR 2018: 1.361
5-year IMPACT FACTOR: 1.578

CiteScore 2018: 1.29

SCImago Journal Rank (SJR) 2018: 0.522
Source Normalized Impact per Paper (SNIP) 2018: 0.602

See all formats and pricing
More options …
Volume 47, Issue 7


Effect of bisphenol-A (BPA) on placental biomarkers for inflammation, neurodevelopment and oxidative stress

Yuko Arita / Hyeon Jeong Park / Aisling Cantillon / Darios Getahun
  • Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramkumar Menon / Morgan R. Peltier
  • Corresponding author
  • Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
  • Department of Obstetrics and Gynecology; NYU-Long Island School of Medicine, Mineola, NY, USA
  • Department of Obstetric and Gynecology, NYU-Winthrop Hospital, 101 Mineola Blvd Rm. 4-040, Mineola, NY, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-24 | DOI: https://doi.org/10.1515/jpm-2019-0045



Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta.


Placental explant cultures were treated with BPA (0–10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA).


Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000–10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production.


BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.

This article offers supplementary material which is provided at the end of the article.

Keywords: bisphenol-A; cytokines; environmental toxins; neurodevelopment


  • 1.

    Schecter A, Malik N, Haffner D, Smith S, Harris TR, Paepke O, et al. Bisphenol A (BPA) in U.S. food. Environ Sci Technol 2010;44: 9425–30.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 2.

    Troisi J, Mikelson C, Richards S, Symes S, Adair D, Zullo F, et al. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta 2014;35:947–52.Web of SciencePubMedCrossrefGoogle Scholar

  • 3.

    Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 2002;110:A703–7.PubMedCrossrefGoogle Scholar

  • 4.

    Cao XL, Zhang J, Goodyer CG, Hayward S, Cooke GM, Curran IH. Bisphenol A in human placental and fetal liver tissues collected from Greater Montreal area (Quebec) during 1998–2008. Chemosphere 2012;89:505–11.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 5.

    Zhang J, Cooke GM, Curran IH, Goodyer CG, Cao XL. GC-MS analysis of bisphenol A in human placental and fetal liver samples. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:209–14.PubMedCrossrefGoogle Scholar

  • 6.

    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002;17:2839–41.PubMedCrossrefGoogle Scholar

  • 7.

    Cantonwine D, Meeker JD, Hu H, Sanchez BN, Lamadrid-Figueroa H, Mercado-Garcia A, et al. Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health 2010;9:62.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 8.

    Behnia F, Peltier M, Getahun D, Watson C, Saade G, Menon R. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern Fetal Neonatal Med 2016;29:3583–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Chou WC, Chen JL, Lin CF, Chen YC, Shih FC, Chuang CY. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ Health 2011;10:94.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Leclerc F, Dubois MF, Aris A. Maternal, placental and fetal exposure to bisphenol A in women with and without preeclampsia. Hypertens Pregnancy 2014;33:341–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 11.

    de Cock M, Maas YG, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr 2012;101:811–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 12.

    Arita Y, Yeh C, Thoma T, Getahun D, Menon R, Peltier MR. Effect of polybrominated diphenyl ether congeners on placental cytokine production. J Reprod Immunol 2018;125:72–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Behnia F, Peltier MR, Saade GR, Menon R. Environmental pollutant polybrominated diphenyl ether, a flame retardant, induces primary amnion cell senescence. Am J Reprod Immunol 2015;74:398–406.Web of ScienceCrossrefPubMedGoogle Scholar

  • 14.

    Tetz LM, Aronoff DM, Loch-Caruso R. Mono-ethylhexyl phthalate stimulates prostaglandin secretion in human placental macrophages and THP-1 cells. Reprod Biol Endocrinol 2015;13:56.CrossrefWeb of SciencePubMedGoogle Scholar

  • 15.

    Arita Y, Kirk M, Gupta N, Menon R, Getahun D, Peltier MR. Effects of tributyltin on placental cytokine production. J Perinat Med 2018;46:867–75.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 16.

    Peltier MR, Arita Y, Klimova NG, Gurzenda EM, Koo HC, Murthy A, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) enhances placental inflammation. J Reprod Immunol 2013;98:10–20.Web of SciencePubMedCrossrefGoogle Scholar

  • 17.

    Peltier MR. Immunology of term and preterm labor. Reprod Biol Endocrinol 2003;1:122.PubMedCrossrefGoogle Scholar

  • 18.

    Hsiao EY, Patterson PH. Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol 2012;72:1317–26.CrossrefWeb of SciencePubMedGoogle Scholar

  • 19.

    Alizadeh M, Ota F, Hosoi K, Kato M, Sakai T, Satter MA. Altered allergic cytokine and antibody response in mice treated with Bisphenol A. J Med Invest 2006;53:70–80.PubMedCrossrefGoogle Scholar

  • 20.

    Youn JY, Park HY, Lee JW, Jung IO, Choi KH, Kim K, et al. Evaluation of the immune response following exposure of mice to bisphenol A: induction of Th1 cytokine and prolactin by BPA exposure in the mouse spleen cells. Arch Pharm Res 2002;25:946–53.PubMedCrossrefGoogle Scholar

  • 21.

    Watanabe H, Adachi R, Kusui K, Hirayama A, Kasahara T, Suzuki K. Bisphenol A significantly enhances the neutrophilic differentiation of promyelocytic HL-60 cells. Int Immunopharmacol 2003;3:1601–8.CrossrefPubMedGoogle Scholar

  • 22.

    Lee MH, Chung SW, Kang BY, Park J, Lee CH, Hwang SY, et al. Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca2+. Immunology 2003;109:76–86.CrossrefPubMedGoogle Scholar

  • 23.

    Sugita-Konishi Y, Shimura S, Nishikawa T, Sunaga F, Naito H, Suzuki Y. Effect of Bisphenol A on non-specific immunodefenses against non-pathogenic Escherichia coli. Toxicol Lett 2003;136:217–27.CrossrefPubMedGoogle Scholar

  • 24.

    Savastano S, Tarantino G, D’Esposito V, Passaretti F, Cabaro S, Liotti A, et al. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: a cross-sectional study on adult male population. J Transl Med. 2015;13:169.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 25.

    Stein TP, Schluter MD, Steer RA, Guo L, Ming X. Bisphenol A exposure in children with autism spectrum disorders. Autism Res 2015;8:272–83.CrossrefWeb of SciencePubMedGoogle Scholar

  • 26.

    Couleau N, Falla J, Beillerot A, Battaglia E, D’Innocenzo M, Plancon S, et al. Effects of endocrine disruptor compounds, alone or in combination, on human macrophage-like THP-1 cell Response. PLoS One 2015;10:e0131428.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Liu Y, Mei C, Liu H, Wang H, Zeng G, Lin J, et al. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem Biophys Res Commun 2014;451:592–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 28.

    Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol 2009;304:49–54.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 29.

    Zhu J, Jiang L, Liu Y, Qian W, Liu J, Zhou J, et al. MAPK and NF-kappaB pathways are involved in bisphenol A-induced TNF-alpha and IL-6 production in BV2 microglial cells. Inflammation 2015;38:637–48.CrossrefPubMedGoogle Scholar

  • 30.

    Romero R, Sepulveda W, Kenney JS, Archer LE, Allison AC, Sehgal PB. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Found Symp 1992;167:205–20; discussion 20–3.PubMedGoogle Scholar

  • 31.

    Yoshimura K, Hirsch E. Interleukin-6 is neither necessary nor sufficient for preterm labor in a murine infection model. J Soc Gynecol Investig 2003;10:423–7.CrossrefGoogle Scholar

  • 32.

    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007;27:10695–702.CrossrefWeb of SciencePubMedGoogle Scholar

  • 33.

    Jang YJ, Park HR, Kim TH, Yang WJ, Lee JJ, Choi SY, et al. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 2012;296:73–82.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 34.

    Acconcia F, Pallottini V, Marino M. Molecular mechanisms of action of BPA. Dose Response 2015;13:1559325815610582.Web of SciencePubMedGoogle Scholar

  • 35.

    Hiroi H, Tsutsumi O, Momoeda M, Takai Y, Osuga Y, Taketani Y. Differential interactions of bisphenol A and 17beta-estradiol with estrogen receptor alpha (ERalpha) and ERbeta. Endocr J 1999;46:773–8.CrossrefPubMedGoogle Scholar

  • 36.

    Sui Y, Ai N, Park SH, Rios-Pilier J, Perkins JT, Welsh WJ, et al. Bisphenol A and its analogues activate human pregnane X receptor. Environ Health Perspect 2012;120:399–405.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 37.

    Ferguson KK, Cantonwine DE, McElrath TF, Mukherjee B, Meeker JD. Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod Toxicol 2016;66:93–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 38.

    Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int J Hyg Environ Health 2015;218:212–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 39.

    Hong CC, Shimomura-Shimizu M, Muroi M, Tanamoto K. Effect of endocrine disrupting chemicals on lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by mouse macrophages. Biol Pharm Bull 2004;27:1136–9.CrossrefPubMedGoogle Scholar

  • 40.

    Teixeira D, Marques C, Pestana D, Faria A, Norberto S, Calhau C, et al. Effects of xenoestrogens in human M1 and M2 macrophage migration, cytokine release, and estrogen-related signaling pathways. Environ Toxicol 2016;31:1496–509.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Dr. Morgan R. Peltier, Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA; Department of Obstetrics and Gynecology; NYU-Long Island School of Medicine, Mineola, NY, USA; and Department of Obstetric and Gynecology, NYU-Winthrop Hospital, 101 Mineola Blvd Rm. 4-040, Mineola, NY, USA, Tel.: +516-663-9796

Received: 2019-02-14

Accepted: 2019-06-17

Published Online: 2019-07-24

Published in Print: 2019-09-25

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Perinatal Medicine, Volume 47, Issue 7, Pages 741–749, ISSN (Online) 1619-3997, ISSN (Print) 0300-5577, DOI: https://doi.org/10.1515/jpm-2019-0045.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in