Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

4 Issues per year


CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Open Access
Online
ISSN
1899-007X
See all formats and pricing
More options …
Volume 53, Issue 1 (Jan 2013)

Issues

Use of Trichoderma Hamatum for Biocontrol of Lentil Vascular Wilt Disease: Efficacy, Mechanisms of Interaction And Future Prospects

Saïd A. El-Hassan
  • Corresponding author
  • School of Agriculture, Policy and Development, University of Reading Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6AR, UK.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon R. Gowen
  • School of Agriculture, Policy and Development, University of Reading Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6AR, UK.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Pembroke
  • School of Agriculture, Policy and Development, University of Reading Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6AR, UK.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-27 | DOI: https://doi.org/10.2478/jppr-2013-0002

Abstract

Trichoderma hamatum (Bonord.) Bainier was evaluated for its antagonistic potential against Fusarium oxysporum Schlecht. emend. Snyder and Hansen sp. lentis, the causal agent of vascular wilt disease of lentil (Lens culinaris Medikus). Hyphal interactions on Petri plates resulted in an increase in the number of conidial spores and an increase in the vegetative growth of T. hamatum, and a decrease in the hyphal formation and sporulation of F. oxysporum f. sp. lentis. Electron and light microscopical observations suggested that hyphae of T. hamatum established aggressive contact and attachment with the hyphae of the pathogen. Growing in parallel, coiled densely and tightly, T. hamatum may penetrate those of the pathogen hyphae causing collapse due to the loss of turgor pressure. The cellulolytic enzymes produced by T. hamatum presented sufficient characteristics for its antifungal activity in the hyphae hydrolysis and competition process. In growth room and glasshouse experiments, the addition of the conidial suspension of T. hamatum or its culture filtrate to soil, significantly (p ≤ 0.05) reduced development and spore germination of F. oxysporum. In the rhizosphere, T. hamatum occupied the same ecological niches (rhizosphere, roots, and stems) parasitizing F. oxysporum f. sp. lentis. Treatments using T. hamatum delayed the time of infection by F. oxysporum, promoted the growth, and increased the dry weight of a susceptible variety of lentil (cv. Precoz). The percent of mortality was reduced to 33 and 40% when using T. hamatum and its filtrate, respectively, compared to 93% in the control treatment during the 65 days of growing in loam/sand (2:1 vol/vol) under glasshouse conditions. Plant colonization results indicate that T. hamatum and its filtrate significantly (p ≤ 0.05) reduced development of the pathogen in the vascular tissue of lentil to < 30 and < 40% stem colonization, respectively, compared to 100% in the plant pathogen control. Our results suggest that potential biocontrol mechanisms of T. hamatum towards F. oxysporum f. sp. lentis were antibiosis by production of antifungal enzymes, complex mechanisms of mycoparasitism, competition for key nutrients and/or ecological niches, growth promotion, and a combination of these effects. This study results hold important suggestions for further development of effective strategies of the biological control of Fusarium vascular wilt of lentil.

Keywords : Fusarium oxysporum f. sp. lentis; mycoparasitism; rhizosphere populations; soil treatment; Trichoderma hamatum

  • Andrabi M., Vaid A., Razdan V.K. 2011. Evaluation of different measures to control wilt causing pathogens in chickpea. J. Plant Prot. Res. 51 (1 ): 55-59.Google Scholar

  • Askew D.J., Laing M.D. 1993. An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathol. 42 (5): 686-690.CrossrefGoogle Scholar

  • Bailey B.A., Bae H., Strem M.D., Crozier J., Thomas S.E., Samuels G.J., Vinyard B.T., Holmes K.A. 2008. Antibiosis, mycoparatism and colonization success for endophytic Trichoderma isolates with biological control potential in Theobromacacao. Biol. Control 46 (1): 24-35.CrossrefGoogle Scholar

  • Baker R., Paulitz T.C. 1996. Theoretical basis of microbial interactions leading to biological control of soil-borne plant pathogens. p. 50-79, In: ‘’Principles and Practice of Managing Soil-borne Plant Pathogens’’ (R. Hall, ed.). APS Press, St. Paul, MN, USA, 342 pp.Google Scholar

  • Bastos C.N. 1996. Mycoparasitic nature of the antagonism between Trichoderma viridi and Crinipellis perniciosa. Fitopatol. Bras. 21 (1): 50-54.Google Scholar

  • Bayaa B., Erskine W. 1990. A screening technique for resistance to vascular wilt in lentil. Arab J. Plant Prot. 8 (1): 30-33.Google Scholar

  • Bayaa B., Erskine W. 1998. Lentil pathology. p. 422-471. In: ‘’The Pathology of Food and Pasture Legumes’’ (D. Allen, J. Lenné, eds.). Commonwealth Agricultural Bureaux International, Slough, Berkshire, UK, 768 pp.Google Scholar

  • Bayaa B., Erskine W., Khoury L. 1986. Survey of wilt damage on lentil in Northern Syria. Arab J. Plant Prot. 4 (2): 118-119.Google Scholar

  • Benhamou N., Lafontaine P.J., Nicole M. 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84 (12): 1432-1444.CrossrefGoogle Scholar

  • Benhamou N., Rey P., Picard K., Tirilly Y. 1999. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89 (6): 506-517.PubMedCrossrefGoogle Scholar

  • Bennett A.J., Whipps J.M. 2008. Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming. Biol. Control 44 (3): 349-361.CrossrefGoogle Scholar

  • Berg G., Zachow C., Lottmann J., Gotz M., Costa R., Smalla K. 2005. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71 (8): 4203-4213.PubMedCrossrefGoogle Scholar

  • Brozová J. 2004. Mycoparasitic fungi Trichoderma spp. in plant protection. Plant Prot. Sci. 40 (2): 63-74.Google Scholar

  • Cook R.J., Baker K.F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, Minnesota, USA, 539 pp.Google Scholar

  • De Castro A.M., Ferreira M.C., Da Cruz J.C., Pedro K.C.N.R., Carvalho D.F., Leite S.G.F., Pereira Jr N. 2010. High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. 1 (1): 1-8.CrossrefGoogle Scholar

  • Dickinson J.M., Hanson J.R., Truneh A. 1995. Metabolites of some biological control agents. Pestic. Sci. 44 (4): 389-393.CrossrefGoogle Scholar

  • El-Hassan S.A. 2004. Biological control of vascular wilt of lentil (Fusarium oxysporum f. sp. lentis) by Bacillus subtilis and Trichoderma hamatum. PhD thesis, The University of Reading, Berkshire, UK, 220 pp.Google Scholar

  • El-Hassan S.A., Gowen S.R. 2006. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J. Phytopathol. 154 (3): 148-155.Google Scholar

  • El-Katatny M.H., Gudelj M., Robra K.H., Elnaghy M.A., Gübitz G.M. 2001. Characterization of a chitinase and an endo-ß-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl. Microbiol. Biotechnol. 56 (1): 137-143.Google Scholar

  • Elad Y. 2000. Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotiniasclerotiorum and Cladosporium fulvum. Biocontrol Sci. Technol. 10 (4): 499-507.CrossrefGoogle Scholar

  • Erskine W., Bayaa B. 1996. Yield loss, incidence and inoculum density associated with vascular wilt of lentil. Phytopathol. Mediterr. 35 (1): 24-32.Google Scholar

  • Erskine W., Muehlbauer F., Sarker A., Sharma B. 2009. The Lentil: Botany, Production and Uses. CAB International, Wallingford, UK, 457 pp.Google Scholar

  • Eziashi E.I., Uma N.U., Adekunle A.A., Airede C.E. 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. African J. Biotechnol. 5 (9): 703-706.Google Scholar

  • Haran S., Schickler H., Chet I. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichodermaharzianum. Microbiology 142 (9): 2321-1331.Google Scholar

  • Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190-194.PubMedCrossrefGoogle Scholar

  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2 (1): 43-56.PubMedCrossrefGoogle Scholar

  • Hohmann P., Jones E.E., Hilla R.A., Stewart A. 2011. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol. 115 (8): 759-767.CrossrefGoogle Scholar

  • Horst L.E., Locke J., Krause C.R., McMahon R.W., Madden L.V., Hoitink H.A.J. 2005. Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compostamended potting mixes. Plant Dis. 89 (11): 1195-1200.CrossrefGoogle Scholar

  • Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87 (1): 4-10.CrossrefGoogle Scholar

  • Khan J., Ooka J.J., Miller S.A., Madden L.V., Hoitink H.A.J. 2004. Systemic resistance induced by Trichoderma hamatum 383 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis. 88 (3): 280-286.CrossrefGoogle Scholar

  • Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8 (2): 114-125.Google Scholar

  • Kovács K., Szakács G., Zacchi G. 2009. Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochem. 44 (12): 1323-1329.CrossrefGoogle Scholar

  • Lorito M. 1998. Chitinolytic enzymes and their genes. p. 73-99. In: ’’Trichoderma and Gliocladium, volume 2’’ (G. E. Harman, C. P. Kubicek, eds.). Taylor and Francis Ltd., London, UK, 440 pp.Google Scholar

  • Lorito M., Peterbauer C., Hayes C.K., Harman G.E. 1994. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140 (3): 623-629.CrossrefPubMedGoogle Scholar

  • Lu Z., Tombolini R., Woo S., Zeilinger S., Lorito M., Jansson J.K. 2004. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol. 70 (5): 3073-3081.CrossrefGoogle Scholar

  • Metcalf D.A., Wilson C.R. 2001. The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol. 50 (2): 249-257.CrossrefGoogle Scholar

  • Mycock D.J., Berjak P. 1991. In defense of aldehyde osmium fixation and critical point drying for characterization of seedstorage fungi by scanning electron microscopy. J. Microscopy 163 (3): 321-332.Google Scholar

  • O’Neill T.M. 1996. Control of grapevine gray mould with Trichodermaharzianum T39. Biocontrol Sci. Technol. 6 (2): 139-146.CrossrefGoogle Scholar

  • Pisi A., Roberti R., Zakrisson E., Filipini G., Mantovani W., Cesari A. 2001. SEM investigation about hyphal relationships between some antagonistic fungi against Fusarium spp. foot rot pathogen of wheat. Phytopathol. Mediterr. 40 (1): 37-44.Google Scholar

  • Prasad R.D., Rangeshwaran R., Hegde S.V., Anuroop C.P. 2002. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot. 21 (4): 293-297.CrossrefGoogle Scholar

  • Samuels G.J., Pardo-Schultheiss R., Hebbar K.P., Lumsden R.D., Bastos C.N., Costa J.C., Bezerra J.L. 2000. Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol. Res. 104 (6): 760-764.CrossrefGoogle Scholar

  • Sánchez V., Rebolledo O., Picaso R., Cárdenas E., Córdova J., González O., Samuels G. 2007. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibranchiatum. Mycopathologia 163 (1): 49-58.Google Scholar

  • Saxena M.C. 1993. The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. p. 3-14. In: ’’Breeding for Stress Tolerance in Cool Season Food Legumes’’ (K. B. Singh, M. C. Saxena, eds.). Wiley, Chichester, UK, 474 pp.Google Scholar

  • Sazci A., Radford A., Erenler K. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with dinitrosalicyclic acid reagent method. J. Appl. Microbiol. 61 (6): 559-562.Google Scholar

  • Schubert M., Fink S., Schwarze F.W.M.R. 2008. Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol. Control 45 (1): 111-123.CrossrefGoogle Scholar

  • Shalini S., Kotasthane A.S. 2007. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Electron. J. Environ. Agric. Food Chem. 6 (8): 2272-2281.Google Scholar

  • Sid Ahmed A., Perez-Sanchez C., Egea C., Candela M.E. 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathol. 48 (1): 58-65.CrossrefGoogle Scholar

  • Sivasithamparam K., Ghisalberti E.L. 1998. Secondary metabolism in Trichoderma and Gliocladium. p. 139-191. In: ’’Trichoderma and Gliocladium, Volume I’’ (C.P. Kubicek, G.E. Harman, eds.). Taylor and Francis Ltd., London, UK, 300 pp.Google Scholar

  • Thrane C., Jensen D.F., Tronsmo A. 2000. Substrate colonization, strain competition, enzyme production in vitro, and biocontrol of Pythium ultimum by Trichoderma spp. isolates P1 and T3. Eur. J. Plant Pathol. 106 (3): 215-225.CrossrefGoogle Scholar

  • Vasudeva R.S., Srinivasan K.V. 1952. Studies on the wilt disease of lentil (Lens esculenta Moench.). Indian Phytopathol. 5 (1): 23-32.Google Scholar

  • Vinale F., Marra R., Scala F., Ghisalberti E.L., Lorito M., Sivasithamparam K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43 (2): 143-148.PubMedCrossrefGoogle Scholar

  • Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40 (1): 1-10.CrossrefGoogle Scholar

  • Yedidia I., Shoresh M., Kerem Z., Benhamou N., Kapulnik Y., Chet I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69 (12): 7343-7353.Google Scholar

About the article

Published Online: 2013-03-27

Published in Print: 2013-01-01


Citation Information: Journal of Plant Protection Research, ISSN (Online) 1899-007X, ISSN (Print) 1427-4345, DOI: https://doi.org/10.2478/jppr-2013-0002.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in